
Copyright © 2013 by SDMC Consulting Limited. All Rights Reserved.

myObjectiveOLAP Version
2.9.8



myObjectiveOLAP Version 2.9.8

2 / 205

Table of contents

Introduction ....................................................................................................... 6
Introducing myObjectiveOLAP .......................................................................... 6
Conventions ................................................................................................... 7
myObjectiveOLAPXL.dll Exposed functions ......................................................... 7
Accessing Exposed Functions ............................................................................ 8
Legal ............................................................................................................. 9
What's new in V 2.9.8 .................................................................................... 10

Getting Started .................................................................................................. 17
System requirements ..................................................................................... 18
Files ............................................................................................................. 19

System Dependecies .................................................................................. 20
Installing the Oracle Data Access Provider ................................................ 20

Getting help .................................................................................................. 22
Installing ...................................................................................................... 22

Installing myObjectiveOLAP ....................................................................... 22
Uninstalling myObjectiveOLAP .................................................................... 25
Upgrading from a previous version ............................................................. 26

Application Configuration Files ............................................................................ 27
mooApplicationSettings.xml ........................................................................... 27

Full ApplicationSettings File ........................................................................ 29
OLAP Only ............................................................................................... 29
mooServer - User Profile ............................................................................ 30
mooServer - DBA  Profile ........................................................................... 30
Escendo enabled profile ............................................................................. 31
Restricting access to users .......................................................................... 31

Connection Files ............................................................................................ 35
Connecting ....................................................................................................... 35

Standard OLAP Connection ............................................................................ 36
Escendo Connection ...................................................................................... 39
mooServer Connection ................................................................................... 41

Graphical Tools ................................................................................................. 43
Analytic Workspace Selector ........................................................................... 44
Session Manager ........................................................................................... 45
Application Settings Editor ............................................................................. 47
OLAP Console ............................................................................................... 48
Oracle OLAP DML Editor ................................................................................ 52
Read OLAP Script File .................................................................................... 62
Relational Explorer ........................................................................................ 64

Using Relational Explorer ........................................................................... 65
Builder ..................................................................................................... 66
Viewing your report ................................................................................... 68
Freehand SQL ........................................................................................... 71
Saving Data to a file .................................................................................. 72
Saving your report definition ...................................................................... 73

Microsoft Excel Functions ................................................................................... 75
mooDesc ...................................................................................................... 75
mooCellQDR ................................................................................................. 76



myObjectiveOLAP Version 2.9.8

3 / 205

mooCellQDRT ............................................................................................... 77
mooQT ........................................................................................................ 77
mooQN ........................................................................................................ 78
mooQ .......................................................................................................... 79
mooW .......................................................................................................... 80

Manipulating Oracle OLAP from Microsoft Excel VBA ............................................. 81
Common Functions ....................................................................................... 82

Handling Connections ................................................................................ 82
connect ................................................................................................ 82
connected ............................................................................................. 83
connectSpec ......................................................................................... 83
disconnect ............................................................................................ 84

AW Operations ......................................................................................... 84
mooAWAttach ...................................................................................... 84
mooAWAttached ................................................................................... 85
mooAWDetach ...................................................................................... 86

Oracle OLAP Executing Commands ............................................................. 86
mooexecute .......................................................................................... 86
wrap_runNonQ ..................................................................................... 87
wrap_GetDML ....................................................................................... 88

Functions ................................................................................................. 89
mooAllStat ........................................................................................... 89
mooAnalyzeCube .................................................................................. 89
mooClearAnalyzeCube ........................................................................... 90
mooFreePages ...................................................................................... 91
mooHost .............................................................................................. 92
mooInstance ......................................................................................... 92
mooSeconds ......................................................................................... 93
mooSysTimeStamp ............................................................................... 94
mooUser .............................................................................................. 94
olapQDR .............................................................................................. 95
mooSysDate ......................................................................................... 96
mooGetDimList ..................................................................................... 96

Error Handling .......................................................................................... 97
getLastMooErr ....................................................................................... 97
mooClearErr ......................................................................................... 97
mooServErr .......................................................................................... 98

Working with objects ................................................................................. 99
mooDimLen .......................................................................................... 99
mooExists ............................................................................................ 99
mooObjType ...................................................................................... 100
mooOpenDim ..................................................................................... 100
mooPushDims ..................................................................................... 101
mooPopDims ...................................................................................... 102
mooStatlen ......................................................................................... 103

Local library functions .............................................................................. 103
mooEncrypt ........................................................................................ 103
mooSetLang ....................................................................................... 104
loadSavedScript ................................................................................... 104
loadSavedScriptFile .............................................................................. 105



myObjectiveOLAP Version 2.9.8

4 / 205

moo Fast Reporting ................................................................................. 106
mooFR ............................................................................................... 106
mooFRDescDown ................................................................................ 107
mooFRDescAcross ............................................................................... 107
Example Application ............................................................................ 108

Setting OLAP Options .................................................................................. 113
mooSetAwWaitTime ................................................................................ 113
mooSetBadLine ....................................................................................... 114
mooSetCommas ...................................................................................... 115
mooSetDateFormat .................................................................................. 115
mooSetDecimals ...................................................................................... 116
mooSetLikeCase ...................................................................................... 117
mooSetNASpell ....................................................................................... 118
mooSetNASkip ........................................................................................ 118
mooSetNASkip2 ...................................................................................... 119
mooSetParens ......................................................................................... 120

Standard OLAP Graphical API ....................................................................... 120
CommandBar .......................................................................................... 121
mooCmd_line ......................................................................................... 121
mooShowConnFrm .................................................................................. 122
ShowAvailAW ......................................................................................... 123

myObjectiveOLAP Server ................................................................................. 124
Architecture ................................................................................................ 126
Installing .................................................................................................... 126
Connecting ................................................................................................. 135
Administration ............................................................................................ 135

Process Management ............................................................................... 136
Process Builder .................................................................................... 136

Defining a New Process .................................................................... 140
Copy Process .................................................................................. 142

Process Manager ................................................................................. 142
Technical Process Manager Flow Diagram ........................................... 147
Technical Implementation ................................................................ 148

Workflow Builder ................................................................................. 149
User Management .................................................................................... 152
Oracle OLAP Standard Compatability ......................................................... 153
Structures ............................................................................................... 155

Creating or modifying a dimension ........................................................ 156
Creating or modifying a cube ................................................................ 160
Values, hierarchies, attributes. .............................................................. 164

System Configuration ............................................................................... 166
Health Check ........................................................................................... 170
mooServer Backup ................................................................................... 170
Multi AW Mode ........................................................................................ 172

Managing Multi AW .............................................................................. 172
Submitting Data .......................................................................................... 174
Excel Reporting Functions ............................................................................. 174

mooDimDesc .......................................................................................... 174
mooCellQDR ........................................................................................... 175

Data Explorer .............................................................................................. 176



myObjectiveOLAP Version 2.9.8

5 / 205

Using Data Explorer ................................................................................. 176
Layout Designer ...................................................................................... 178
Selector .................................................................................................. 179
Report .................................................................................................... 180
Management ........................................................................................... 181
Export Excel ............................................................................................ 186

API ............................................................................................................ 187
MOO.ATTACH.AW .................................................................................. 188
MOO.CHANGE.DIM ................................................................................. 188
MOO.CHANGE.PASSWORD ...................................................................... 189
MOO.CREATE.CUBE ................................................................................ 189
MOO.CREATE.DIM .................................................................................. 190
MOO.DATA.ENTRY ................................................................................. 191
MOO.DELETE.CUBE ................................................................................. 191
MOO.DETACH.AW .................................................................................. 192
MOO.DELETE.DIM ................................................................................... 192
MOO.EXTERNAL.CALL ............................................................................. 193
MOO.FIND.CMP ...................................................................................... 194
MOO.SUBMIT.DATA ................................................................................ 195
MOOMAN ............................................................................................... 195
MOO.LIST.DIMS ...................................................................................... 196
MOO.NEW.PROCESS ............................................................................... 196
MOO.USER.CLOSE .................................................................................. 196
MOO.USER.INIT ..................................................................................... 197
MOO.CHANGE.CUBE ............................................................................... 197
MOO.COMP.SANE ................................................................................... 198
MOO.LIST.DIM.DESC ............................................................................... 198
MOO.CREATE.USER ................................................................................ 199
MOO.DELETE.USER ................................................................................. 199
MOO.MNT.HI .......................................................................................... 200
MOO.PR.ACTIVATE ................................................................................. 200
MOO.PR.DURATION ................................................................................ 201
MOO.PR.MGR ......................................................................................... 201
MOO.PR.SEQUENCE ................................................................................ 201
MOO.PROCESS.LOG ................................................................................ 202
MOO.REMOVE.WFPROCESS ..................................................................... 202
MOO.SPLIT ............................................................................................ 203
MOO.UNTAR.FILE ................................................................................... 203
MOO.AGGREGATE.CUBE ......................................................................... 204
MOO.AGGREGATE .................................................................................. 204
MOO.AWM.COMPAT ................................................................................ 204
MOO.AWM.COMPAT.WRAP ...................................................................... 205



myObjectiveOLAP Version 2.9.8

6 / 205

Introduction

Introduction 

This document is your primary help and technical reference for use of the myObjectiveOLAP for Microsoft
Excel application.

This Preface contains these topics:

Audience
Documentation Accessibility Related Documents Passwords in Code Examples Conventions

Audience

This help file and the document "myObjectiveOLAP Provider for Microsoft Excel Technical Reference Guide"
are intended for programmers who are developing applications to access an Oracle OLAP database using
the myObjectiveOLAP provider. This documentation is also valuable to systems analysts, project managers,
and others interested in the development of database applications.

To use this document, you must be familiar with Microsoft Visual Basic for Applications (VBA) or a
comparable object orientated language.
Users should also be familiar with the use of the Oracle OLAP Data Manipulation Language (DML) to
access information in an OLAP database.

Documentation Accessibility

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for
writing code require that closing braces should appear on an otherwise empty line. However, some screen
readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that SDMC does
not own or control. SDMC neither evaluates nor makes any representations regarding the accessibility of
these Web sites.

Related Documents

For more information, see these Oracle resources:

Passwords in Code Examples

For simplicity in demonstrating this product, code examples do not perform the password management
techniques that a deployed system normally uses in a production environment. 

Introducing myObjectiveOLAP



myObjectiveOLAP Version 2.9.8

7 / 205

myObjectiveOLAP Client Overview

myObjectiveOLAP is a data provider for the Oracle OLAP database, using and inheriting interfaces from the
Oracle ODP .Net framework.

The myObjectiveOLAP framework allows native providers to expose Oracle OLAP specific features and data
types. The myObjectiveOLAP framework provides an automation layer, with high performance and robust
data type control, between the Microsoft Windows client application and the Oracle OLAP database.

The myObjectiveOLAP provider for MS Excel uses Oracle's native APIs to offer fast and reliable access to
the Oracle OLAP engine within the Oracle database. It exposes many of the Oracle OLAP data
manipulation language commands and functions to the client.

The myObjectiveOLAP framework offers additional APIs and graphical interfaces for working with both data
and structures of the Escendo (OFA / OSA replacement) product.

.

Conventions

Conventions

The following text conventions are used in this document:

Convention Meaning

Boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

mono-space           Mono-space type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

[VALUE]           Square bracket encapsulation equates to a user supplied value.

myObjectiveOLAPXL.dll Exposed functions

myObjectiveOLAP Files and Components

myObjectiveOLAPXL.dll

myObjectiveOLAPXL.dll is the core library that is used by any of the myObjectiveOLAP applications.
myObjectiveOLAPXL.dll is not optional and must be installed in order to connect Microsoft Excel to the
Oracle OLAP database using the myObjectiveOLAP data provider.  myObjectiveOLAPXL.dll contains pre-
defined functions which are exposed to Microsoft Excel.



myObjectiveOLAP Version 2.9.8

8 / 205

myObjectiveOLAPXL.dll Exposed functions

These functions are grouped into four sections:

Common Functions

Common functions enable the end user to interact either with the myObjectiveOLAP library itself or to
execute commands or retrieve output from the Oracle OLAP server application.

The functions include a number of low level API's that do minimal checking before attempting to execute
within the server side environment. It is best practice to only use these APIs if myObjectiveOLAP does not
offer a function to do this for you. By using the myObjectiveOLAP functions in your code, additional pre-
execution checks are performed and enhanced error trapping is available to you.

GUI Functions

A number of functions offered by the myObjectiveOLAP framework can provide the end-user with a graphical
interface into the Oracle OLAP option.

Common Options

Common options enable the end-user to control Oracle OLAP server side options.

Reporting Functions

These are Excel worksheet cell based functions which can be used by end users to develop rich reporting
solutions

Accessing Exposed Functions

Accessing Exposed Functions

Getting an object reference to myObjectiveOLAP from VBA

In all of the examples shown, you will see a preceding "o." in front of the myObjectiveOLAP function, this is
the object reference to the myObjectiveOLAP library. 

You must also generate an object reference either by using this example or creating your own.

To instantiate the myObjectiveOLAP from Microsoft Visual Basic for Applications or Microsoft Visual Basic
you must bind myObjectiveOLAP to an object that you can then reference.

In all of the examples shown we do this check by calling the regQ function which is shown below.

The regQ function binds the myObjectiveOLAPXL.AddinModule to the Global object "o". Once "o" has been
bound you can use it to reference the myObjectiveOLAP functions i.e. o.connect o.mooAttached etc.

Global o As Object
Global oregistered As Boolean
Public Function regQ() As Boolean

If oregistered = False Then
Set o = Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object
oregistered = True



myObjectiveOLAP Version 2.9.8

9 / 205

Else
   regQ = True
End If
End Function

Accessing functions within the myObjectiveOLAP library directly

Instead of creating an object reference as above you can access functions directly by fully qualifying the
function as below:

Dim ret_ as string

ret_ =
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.mooExecuteO
nly("LMT TIME to NULL")

This method can be safer, especially in Excel versions lower than 2007 where the object reference can be
lost.

Legal

myObjectiveOLAP Release 2.9.8.32

Copyright © 2009, 2010, 2011, 2012, 2013,2014 SDMC Consulting Limited and/or
its affiliates. All rights reserved. 

PrimaryAuthor: Robert Taylor

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. 

Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. 

SDMC Consulting Limited and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

SDMC Consulting is a registered trademark of SDMC Consulting and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. 

SDMC Consulting Limited and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. SDMC Consulting Limited and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.



myObjectiveOLAP Version 2.9.8

10 / 205

If you do not agree to the terms of this EULA, do not install or use the
SOFTWARE PRODUCT.

The SOFTWARE PRODUCT is protected by copyright law s and international copyright treaties, as w ell as other intellectual
property law s and treaties. The SOFTWARE PRODUCT is licensed, not sold.

Microsoft, WINDOWS®, Microsoft Excel®, Microsoft Office® are registered trademarks of Microsoft Corporation. ORACLE®
is a registered trademark of ORACLE Corporation.

Other names may be trademarks of their respective owners.

What's new in V 2.9.8

 

myObjectiveOLAP (2.9.8)   Release Note (2014-01-10)

2.9.8  Adds new features, improves performance and resolves some issues.

This release is a significant release which requires an upgrade of your
myObjectiveOLAP Server installation if implemented.

Notable BUGS & Requests included in this release:

Some of the features listed below were included in 2.9.7, but as that release was not externally released to
the customer base they are being summarised within the 2.9.8 schedule.

2.9.8  - Major  -  Re-implementation of the Process Manager to enable parallel processing and Read-only,
Read-Write and multi Sub AW processing.

2.9.8  - Major  -  Implementation of a capstone/sub AW model to allow data and or processes to be partitioned
within a single myObjectiveOLAP Server installation.

2.9.8  - Major  -  Significant changes to the Relational Explorer graphical SQL query builder with Excel
integration.

2.9.8 - of note     - Improvements to the Data Explorer, multi-dimensional graphical reporting suite for OLAP
analysis on Oracle OLAP Analytic Workspaces.

2.9.8 - of note     - Implementation of Scheduled Reports enabling end-users to define a report through Data
Explorer for latest execution and deliver-by-email distribution.

2.9.8 - of note     - Improvements to Session Manager and enhanced kill session engine support RAC
installations,

2.9.8 - of note     - Brand new code Editor for editing Oracle OLAP DML,

193 Individual bugs or enhancement requests have been closed in 2.9.8  For specific bug inquiry status
please raise a ticket or review the bug status within the support.myobjectiveolap.com support system.

Clients running myObjectiveOLAP Server should also apply the 2.9.8 server patch.  

2.9.8 - Server patch is fully backwards compatible with earlier releases and is designed to take advantage of



myObjectiveOLAP Version 2.9.8

11 / 205

the improvements in the 2.9.8 client.   

myObjectiveOLAP (2.9.7)   Release Note 

2.9.7  Was a closed release cycle.

myObjectiveOLAP (2.9.6)   Release Note (2013-07-14)

2.9.6  Adds new features, improves performance and resolves some issues.

This release is recommended to be applied to all existing clients.  This release is fully
backward compatible with all existing releases.

Notable BUGS & Requests included in this release:

2.9.6  - of note  -  New myObjectiveOLAP Server Data Explorer graphical tool added, please see the Data
Explorer topic.

2.9.6 - of note  -  CST-REQ#2013020910000097 - If a mooCellQDR formula is refreshed in Excel when no
connection to the Oracle OLAP database has been made then the value "999999" is returned instead of "0".
  mooCellQDRT (text retrieve) now reports: "You are not connected to Oracle"

2.9.6 - of note -   CST-REQ#2013041210000100.   Changes to the session manager to provide more
information on the users activities, including the current Oracle OLAP DML execution.  There is also a
significant change in the way in which Oracle sessions are killed.   

2.9.6 -  of note  - New mooFRM API which replaces the mooFR API.  Improvements: 

§ performance improvements in data retrieval and the network transfer protocol.

§ dimension value and measure descriptions can be retrieved in a single database pass.

§ multi dimension down and across supported (up to 5 dimensions on each axis).

§ better error reporting to the client calling.  

2.9.6  - minor  -  BUG#1107 MetaData and OLAP DML code backup, now includes backup of the magazines
recording backups and OLAP checkout, commit information

2.9.6  - minor          - CST-REQ#2013053110000108  Add a new process management web viewer.

2.9.6  - minor  -  BUG#1100 Process Manager no longer displays "toolstriplabel1" if a non-admin profile enters
the Process Manager viewer and does not press Refresh.
 
2.9.6  - minor -  Other minor fixes.

Clients running myObjectiveOLAP Server should also apply the 2.9.6 server patch.  

2.9.6 - Server patch is fully backwards compatible with earlier releases and is designed to take advantage of
the improvements in the 2.9.6 client.   

In addition there is a new mooWebServices daemon which adds a web based Process Management
viewer.

Failure to apply the 2.9.6 server patch will not cause client issues with earlier clients, however,
improvements in performance will not be available if the client utilises the mooFRM API.

Components of patch:

o 2013-07-14-myobjectiveolapserver-296-Build20130701-moocode.eif

o 2013-07-14-myobjectiveolapserver-296-Build20130701-pack.sql



myObjectiveOLAP Version 2.9.8

12 / 205

The 2.9.6 Server patch is available from the support portal.

myObjectiveOLAP (2.9.5)   Release Note (2013-05-13)

2.9.5.1 was a technical release to add functionality to aide a specific enterprise
customer.

2.9.5.1 - Explanation, 2.9.5.1 was released to add supporting functionality to a aide an infrastructure
requirements of an enterprise client.  2.9.5.1 included ported functionality from the 2.9.6 branch notably a V 1.0
release of Data Explorer.

2.9.5.1  Is not available from the support portal, all functionality is included within the 2.9.6 release.

myObjectiveOLAP (2.9.4.1) Release Note (2013-02-10)

2.9.4.1 is a technical update to 2.9.4

This release is recommended to be applied to all existing clients.  This release is fully
backward compatible with all existing releases.

2.9.4.1  - of note  - REQ#10102   Change mooCellQDR & mooCellQDRT to use bind variables instead of
submitting the query as a text string.  Reduces the stress on the shared_pool which in implementations with large
numbers of clients can cause potential latch locks.   This version increases client QDR performance by 4 - 6 times
in environments which can benefit from the update.

myObjectiveOLAP (2.9.4) Release Note (2013-01-27)

2.9.4 Adds new features and resolves some issues.

This release is recommended to be applied to all existing clients.  This release is fully
backward compatible with all existing releases.

2.9.4  - of note  -  CST-REQ#013011810000011-BZ:101 Add ability to have a single
mooApplicationSettings.xml file loaded from the install directory.
2.9.4  - DocOnly -  CST-REQ#2013012710000011           Document how to load the myObjectiveOLAPXL.dll
in a user account which did not install the product on the same  
          machine as myObjectiveOLAP was originally installed.

myObjectiveOLAP (2.9.3.8) Release Note (2013-01-13)

2.9.3.8 is a minor update to 2.9.3

This release primarily is a non-technical update and adds requested certification to
certain Windows 8 and Office combinations.

Please read the 2.9.3 updates for a list of all changes in 2.9.3

2.9.3.8  - of note  -  CST-REQ#100033 Certify Windows 8 (32 & 64 bit), Office 2013 (32-bit).

2.9.3.8  - minor  -  Fix to Export to CSV in Relational Explorer, whilst data was extracted correctly a controlled error
was generated on completion.

2.9.3.8  - minor      - REQ#100048 Add a control to Session Manager to limit the details displayed.  If no detail
selected then only a single record per session is       displayed.  Useful for those customers with many
concurrent sessions.



myObjectiveOLAP Version 2.9.8

13 / 205

myObjectiveOLAP (2.9.3) Release Note (2012-12-31)

2.9.3  This is a large update, please read the Release Notes carefully.

This release is strongly recommended to be applied to all existing clients.  This release
is fully backward compatible with all existing releases.

Notable changes in this version

2.9.3  - minor  -  Numerous improvements and changes

2.9.3  - minor  -  Workflow updates

.
2.9.3  - minor  -  Console warning you should clear your history if gt 20k lines performance impact

2.9.3  - minor  -  Fixed a bug in how OLAP handles ASCII 32 --> 127 chars.

2.9.2  - minor  -  Workflow updates

2.9.2  - minor  -  AWM Compatibility improvements

2.9.2  - minor  -  Multi-threading model changes and fixes

2.9.2  - minor  -  REQ#100052 Change the way Session Manager disposes of sessions
    REQ#100053 Hide kill button in Session Manager if logged in as MOOUSER but allow them to

open the Session Manager
    Small improvements to MOO.EXTERNAL.CALL API
    UI Improvements and changes
    Backward compatibility changes to mooApplicationSettings.xml

2.9.1  - minor  -  Relational Explorer added

2.9.1 -  minor  -  Updates to Workflow

2.9.1 -  minor  -  Security restrictions hardened on MOOUSER

Notable BUGS & Requests included in previous updates

2.8.1  - minor  -  Workflow added, number of small improvements and fixes.

2.7.1  - minor  -  Rollup Patch, UI Improvements, Dimensional & Cube Explorer exit BETA, updates to mooFR

2.6.4  - minor  -  BUG#1042 -- 1056 Updates to Dimensional & Cube Explorer

2.6.3  - minor  -  Added R1 Cube Explorer (BETA)
     Updates to Dimensional Explorer

2.6.2  - minor  - Updates to Dimensional Explorer

2.6.1  - minor  - Numerous including but not limited to:
    Updated Ribbon graphics
    Updates to Process Builder
    Dimensional maintenance (BETA)

     Added MOO FONT_SIZE
    Small fixes to Editor windows and Recall form

2.5.3  - minor  - REQ#1037  Copy Process window added.

2.5.2  - minor  - REQ#1036  mooGetDimList ([Dimension Name], True/False. The mooGetDimList function
returns a one dimensional array containing dimension values from a dimension within Oracle OLAP



myObjectiveOLAP Version 2.9.8

14 / 205

2.5.1  - major  - BUG#1009  Fixes to multi-database connection threading.

2.4.2  - major  - BUG#1010  Fixes to frmRecall to stop it crashing if it has not got anything to recall

2.4.1  - minor  - REQ#1007  Added showSaveScript interface

2.4.1  - minor  - BUG#1009 Enable resize of edit wind

2.3.4  - minor  - REQ#1006  Update to mooServerLogin

2.3.4  - minor  - BUG#1008 Enable resize of edit window

2.3.2  - minor  -  BUG#1007:  Changed the description placed in the dba_scheduler for the moo pm

2.3.2  - minor  -  BUG#1006:  Refresh Data

2.3.1 - minor  - Process Manager standard reports. and updates to the help menus

2.3.1 - minor  - REQ#004: update to new help system

2.2.1 - major  - Underlying ADX shim loader has been migrated to ADX2010.  Please ensure you delete your
previous myObjectiveOLAP install completely.

2.2.1 - minor  - REQ#37: Allow the running of the Process Manager for "Just the next task" 

2.2.1 - minor  - REQ#35: New menu item under MooServer --> "Backup mooServer Code AWs" which backs up
all meta-data AWs to a valid CDA

2.2.1 - minor  - REQ#30: When saving a connection file, the user is now asked if they wish to save a default file
'serverDefault.xml' if they say Yes, then the contents of this file are loaded every time the Connection window is
loaded.

2.2.1 - minor  - REQ#45: A 64bit ADX Loader shim will be distributed with future releases.  This will enable
customers using Office 2010 64bit to use the myObjectiveOLAP add-in. This is still classed as BETA functionality
and the support matrix remains unchanged (below) .

2.2.1 - minor  - BUG#1:  RESOLVED PR.CFG(PR.COL 'DESC') can not be NA

2.2.1 - minor  - BUG#6:  New menu item under MooServer --> Moo Health Check which checks the status of
mooServer meta-data by calling moo.meta.check

2.2.1 - minor  - BUG#7:  Fix to Process Submission window to ensure that databases are attached correctly

2.2.1- minor  - BUG#12:  OLAP DML can start with MOO but not MOO{SPACE} now

2.2.1- minor  - BUG#16:  Add a Change Password window to the mooServer login window.

2.2.1 - minor  - BUG#19:  Program editor changed to not leave mooprgtexttemp text variables on the server.

2.2.1 - minor  - BUG#20:  Allow the ability to create Admin user accounts through the User Manager.

2.2.1 - minor  - BUG#25:  Allow the ability to remove the standard connection editor from the myObjectiveOLAP
menu, set: ALLOW_DB_CONNECT FALSE in mooApplicationSettings.xml

                  This is documented in 148-mooApplicationSettingsINTERNAL.rtfd 

2.2.1 - minor  - BUG#26:  Program editor no longer leaves blank lines at the bottom of an edited program

2.2.1- minor  - BUG#28:  Un-used toolstripMenu removed from prSubmitFRM



myObjectiveOLAP Version 2.9.8

15 / 205

2.2.1 - minor  - BUG#29:  Do not accidentally reset the users password when changing other details.

2.2.1 - minor  - BUG#41:  Update process screen after deleting queued process

2.2.1 - minor  - BUG#43:  Icon change

2.2.1 - minor  - BUG#44:  Add the ability to run ALTER SYSTEM DISCONNECT instead of ALTER SYSTEM KILL
SESSION in session manager

1.4.7 - major   - A number of core components are now multi-threaded enabling faster execution for a number
of actions.

1.4.7 - major   - myObjectiveOLAP is now supported in multiple Excel sessions (processes) on the same
client PC running Excel 2010 without conflict or locks between sessions.

1.4.7 - note worthy  - Read and execute an OLAP script file.

    A new menu item has been added to the Advanced Menu Group.    

    Create a text file in your favorite text editor containing one or more OLAP DML statements.

                     Save your file  with a .moo extension. 

                                 Select your file from the dialog box enabled through the Read OLAP Script file menu item.

    myObjectiveOLAP will execute your OLAP DML and any output from the Oracle OLAP engine
will be printed (off) to a file of the same name and client directory location as the original script file but with a .out
extension

1.4.7 - note worthy - Addition of XML mooApplicationsSettings.xml file.    This enables an administrator to disable
advanced menu items distributed to the client PC estate.

     Please see:   http://myobjectiveolap.com/documents/mooApplicationSettings.rtfd for further
information

     Please see:   http://myobjectiveolap.com/documents/mooApplicationSettings.xml for an
example XML file which enables all functionality

     Please note the above XML file enables all settings with the exception of Escendo functionality.
 To enable Escendo set the relevant key to true.

1.4.7 - minor  - Improvements in the internal mechanism which binds the ribbon menu

1.4.7 - minor   - Updates to look and feel of all GUI screens

1.4.7 - minor   - Adjustments to the OLAP command editor to make full screen mode more comfortable

1.4.7 - minor   - Updates to the on-line help.

1.4.7 - minor   - Minor bug fixes and improvements.

1.4.7 - minor   - Updates to the Supported versions list to exclude 64bit versions of Microsoft Office

1.4.6 - Internal version not publicly distributed

1.4.5 - Minor bug fixes and improvements

1.4.5 - Addition of mooCellQDR Excel function, which can be used as a drop in replacement for the Express
XPCellQDR function format identical.

1.4.5 - Addition of mooDimDesc Excel function, which can be used as a drop in replacement for the Express
XPDimDesc function.  Format similar, see Technical Reference Guide 1.4.5.

1.4.5 - Addition of OLAP Session Manager, you must have ALTER_SYSTEM in order to kill OLAP sessions.

1.4.5 - Addition of Escendo Connection Editor.  Enables the end user to define a connection to an Escendo
enabled application.  Ensure connection security compatibility with Escendo Corps suite of applications .  

http://myobjectiveolap.com/documents/mooApplicationSettings.rtfd
http://myobjectiveolap.com/documents/mooApplicationSettings.xml


myObjectiveOLAP Version 2.9.8

16 / 205

1.4.4  Internal version not publicly distributed

1.4.3 - Fixed a reported bug which meant that the password was not stored correctly in the connection xml file.
1.4.3 - Description of entry box on connection screen changed from "SID" to "Service Name"

1.4.2 - Minor bug fixes
1.4.1 - Cell limit per individual array retrieve processed by the mooFr function increased from 600,500 to
15,300,000

Installation Instructions

- Close all running instances of Excel  De-install the current installation of myObjectiveOLAP either:

Recommended: 

Through the Windows Control Panel Add/Remove Programs pane.or by running your original installation setup.exe
file and choose Remove.

Alternatively

note: You must use the original setup.exe not setup.exe included within your installed release:

. 1.4.1  - Run the setup.exe included in 2010-06-11-moo-4.1.zip 

. 1.4.2  - Run the setup.exe included in 2010-08-18-moo-4.1.zip 

. 1.4.3 - Run the setup.exe included in 2010-11-12-moo-1.4.3.zip

. 1.4.4 - Run the setup.exe included in 2011-04-16-moo-1.4.4.zip

. 1.4.5 - Run the setup.exe included in 2011-09-12-moo-1.4.5.zip

. 1.4.6 - Run the setup.exe included in 2011-10-18-moo-1.4.6.zip

. 1.4.7 - Run the setup.exe included in 2011-11-11-moo-1.47.zip

Supported Server Configuration:

Oracle OLAP 11g R1 & R2
Oracle OLAP 10g R1 & R2

Supported Microsoft Windows client operating system:

Microsoft Windows XP Service Pack 2         (32 bit) 
Microsoft Windows XP Service Pack 3         (32 bit) 
Microsoft Windows 7  (All)      (32 bit) 
Microsoft Windows 7  (All)      (64 bit) 
Microsoft Windows 8  (All)      (32 bit) 
Microsoft Windows 8  (All)      (64 bit) 

Supported Microsoft Office:

Microsoft Excel 2003       (32 bit) 
Microsoft Excel 2007      (32 bit)  
Microsoft Excel 2010      (32 bit) 
Microsoft Excel 2013      (32 bit) 

64bit Microsoft Office

64 bit releases of Microsoft Office are NOT supported and will NOT work due to a change Microsoft have made to



myObjectiveOLAP Version 2.9.8

17 / 205

the mechanism by which extensions communicate with Excel.  This does not stop you running 32bit Office on 64bit
Windows.

A 64 bit compatible release of myObjectiveOLAP is available in beta, please contact us if you wish to participate in
the testing process.

Unsupported:

The following platforms are not supported, although we will help if we can. The information pertaining to
myObjectiveOLAPs ability to install and work correctly with older server and client configurations
is provided based on customer feedback and has not been independently verified by myObjectiveOLAP
development.

Oracle OLAP 9i R1 + this configuration has not been tested at all.  
Oracle OLAP 9i R2 + this configuration has been reported as working by a number of customers.
Microsoft Office 2000 + this configuration has been reported as working by a number of customers
and is in production use.
Microsoft VISTA ALL variants + this configuration has been reported as working by a number of users and is
in production use.
Microsoft Office ALL 64 bit variants + Please see statement above
Terminal or thin-client + This includes but is not limited to: VDI, Microsoft RDC, Citrix.  This
configuration has been reported as working by a number of customers (Citrix,                                                         
                   Windows Server 2008 & 2012). 

Legal Notices

Use of the myObjectiveOLAP softw are is dependent on acceptance of the myObjectiveOLAP End User License Agreement. The
header of  this agreement is replicated below . The complete EULA is available at:

http://myobjectiveolap.com/documents/mooEULA.pdf

END-USER LICENSE AGREEMENT FOR myObjectiveOLAP IMPORTANT  PLEASE READ THE TERMS AND CONDITIONS OF THIS
LICENSE AGREEMENT CAREFULLY BEFORE CONTINUING WITH THIS PROGRAM INSTALL: SDMC Consulting Limited End-User
License Agreement ("EULA") is a legal agreement betw een you (either an individual or a single entity) and SDMC Consulting
Limited. 
for the SDMC Consulting Limited softw are product(s) identif ied above w hich may include associated softw are components,
media, printed materials, and "online" or
 electronic documentation ("SOFTWARE PRODUCT"). By installing, copying, or otherw ise using the SOFTWARE PRODUCT, you
agree to be bound by the terms of this EULA. 
This license agreement represents the entire agreement concerning the program betw een you and SDMC Consulting Limited,
(referred to as "licenser"), and it supersedes any prior proposal, representation, or understanding betw een the parties.

If you do not agree to the terms of this EULA, do not install or use the SOFTWARE
PRODUCT.

The SOFTWARE PRODUCT is protected by copyright law s and international copyright treaties, as w ell as other intellectual
property law s and treaties. The SOFTWARE PRODUCT is licensed, not sold.

Microsoft®, WINDOWS®, Microsoft Excel®, Microsoft Office® are registered trademarks of Microsoft Corporation. ORACLE®
is a registered trademark of ORACLE Corporation.  Other names may be trademarks of their respective owners.

Getting Started

Getting Started

In this chapter you will learn and understand the following



myObjectiveOLAP Version 2.9.8

18 / 205

Chapter Summary

System Requirements Understand the minimum PC requirements.
Understand any pre-requisite software
Understand database minimum requirements

Files Understand what files are installed when you install myObjectiveOLAP Client
and their purpose

Understand the ODAC and .NET pre-requisite software

Installing ODAC

Getting Help Find help and support

Installing Installing myObjectiveOLAP Client

Uninstalling myObjectiveOLAP Client

Upgrading myObjectiveOLAP

System requirements

System Requirements

Oracle Data Access Components

You must install the ODAC Driver before using myObjectiveOLAP.

You can download a copy of this from the Oracle website:

ODAC 11.2 Release 3 (11.2.0.2.1) with Xcopy Deployment

http://www.oracle.com/technetwork/database/windows/downloads/utilsoft-087491.html 
(URL Correct at time of  writing)

myObjectiveOLAP 2010 (V2.2) only supports Version: 2.112.2.0 of Oracle.DataAccess.dll

You must ensure you have the correct version installed on your computer, otherwise you will get an
"Oracle.DataAccess TYPE Error" when trying to use myObjectiveOLAP functions.

Supported Server Configuration:

Oracle Database with OLAP 11g R1 & R2
Oracle Database with OLAP 10g R1 & R2

Oracle Database with OLAP 11.2.0.3 recommended

Supported Microsoft Windows client operating system:

Microsoft Windows XP Service Pack 2         (32 bit) 
Microsoft Windows XP Service Pack 3         (32 bit) 
Microsoft Windows 7      (32 bit) 
Microsoft Windows 7      (64 bit) 
Microsoft Windows 8      (32 bit) 
Microsoft Windows 8      (64 bit) 

http://www.oracle.com/technetwork/database/windows/downloads/utilsoft-087491.html


myObjectiveOLAP Version 2.9.8

19 / 205

Supported Microsoft Office:

Microsoft Excel 2003       (32 bit) 
Microsoft Excel 2007      (32 bit)  
Microsoft Excel 2010      (32 bit) 

64 bit releases of Microsoft Office are NOT supported and will NOT work due to a change Microsoft have made to
the mechanism by which extensions communicate with Excel.
A 64 bit compatible release of myObjectiveOLAP is available in beta, please contact us if you wish to participate in
the testing process.

Unsupported Platforms:

The following platforms are not supported, although we will help if we can.

The information pertaining to myObjectiveOLAPs ability to install and work correctly with older server and client
configurations
is provided based on customer feedback and has not been independently verified by myObjectiveOLAP
development.

Oracle OLAP 9i R1 + this configuration has not been tested at all
Oracle OLAP 9i R2 + this configuration has been reported as working by a number of users.
Microsoft Office 2000 + this configuration has been reported as working by a number of users and is
in production use.
Terminal or thin-client + This includes but is not limited to: VDI, Microsoft RDC, Citrix.    

Microsoft Office ALL 64 bit variants

Files

Files created or used by myObjectiveOLAP

Oracle ODAC Driver

C:\Program Files\oracleODAC2\odp.net\bin\2.x\Oracle.DataAccess.dll

Oracle.DataAccess.dll

myObjectiveOLAP

C:\Documents and Settings\{username}\Application Data\myObjectiveOLAP\myObjectiveOLAP

Microsoft extensibility and Interop Libraries

Interop.VBIDE.dll
Extensibility.dll
Interop.Office.dll
Interop.Excel.dll

Com-Shim Loader and registration Libraries, Executable and Manifest

adxloader.dll.manifest
AddinExpress.MSO.2005.dll
adxregistrator.exe
AddinExpress.XL.2005.dll

myObjectiveOLAP Core Libraries

myObjectiveOLAPXL.dll



myObjectiveOLAP Version 2.9.8

20 / 205

adxloader.myObjectiveOLAPXL.dll
adxloader64.myObjectiveOLAPXL.dll

myObjectiveOLAP Configuration Files

C:\Documents and Settings\{username}\Local Settings\

mooApplicationSettings.xml
{Connection_File_name(s)}.xml

System Dependecies

System Dependencies

Before installing or using myObjectiveOLAP you must ensure the PC you are installing on has the following
library and runtime environment installed:

ODAC 11.2 Release 3 (11.2.0.2.1) with Xcopy Deployment

myObjectiveOLAP links to the Oracle Data Provider for .NET 2.0 libraries available from Oracle.
The Oracle Data Provider for .NET 2.0 offers high performance and efficient access to Oracle data sources 

.NET Runtime 2.0

myObjectiveOLAP makes use of the .NET framework, we have intentionally continued to use the 2.0 version
of the framework to maximize the possibility that this will not be a new dependency on your corporate PC
estate.

Future note
myObjectiveOLAP development plan is to migrate to the .NET 4 release by myObjectiveOLAP 3.0.  This has
a current but not binding scheduled release for January 2013.  .NET Framework 4.0 was release in 2010.

Installing the Oracle Data Access Provider

ODAC 11.2 Release 3 (11.2.0.2.1) with Xcopy Deployment

myObjectiveOLAP 2010 (V2.2) only supports Version: 2.112.2.0 of Oracle.DataAccess.dll
You must ensure you have the correct version installed on your computer, otherwise you will get an
"Oracle.DataAccess TYPE Error" when trying to use myObjectiveOLAP functions.

Getting Oracle Data Provider for .NET 2.0
To get the latest version of the Oracle Data Provider for .NET 2.0 you can Google:

“oracle odac 11g xcopy download”

Alternatively, version 11.2.0.2.1 can be downloaded from this URL:

http://www.oracle.com/technetwork/database/windows/downloads/utilsoft-087491.html 
(URL Correct at time of  writing)

Preparing to Install

Unzip ODAC112021Xcopy.zip into a temporary directory on the computer you wish to install ODAC and
myObjectiveOLAP on, for example:

http://www.oracle.com/technetwork/database/windows/downloads/utilsoft-087491.html


myObjectiveOLAP Version 2.9.8

21 / 205

C:\ODAC112021Xcopy

Install the Oracle Data Provider for .NET 2.0 to a directory on your PC. In this example we will install ODAC
to c:\oracleOdac

We will install Oracle Data Provider for .NET 2.0 so that we can see any information returned from the
install.bat program

Windows start [Menu Button]  ® Run ® cmd.exe Press [OK]

Hint
On Windows 7 right click on cmd.exe and press Run as Administrator.  Enter your Admin Credentials.

Change the directory to your temporary directory

cd \ODAC112021Xcopy

[where ODAC112021Xcopy is your temporary staging directory] Press [Enter key]

Enter the following command, changing the location of your temporary directory and where you wish to
install Oracle Data Provider for .NET 2.0 as appropriate.

install.bat odp.net20 c:\oracleOdac odac

Command Explanation
Install.bat This is the install executable made available by Oracle
odp.net20 This is the ODAC component we want to install
C:\oracleOdac This is the directory we want to install ODAC into.
Odac This is the Oracle_Home name we are giving our install

Press [Enter]



myObjectiveOLAP Version 2.9.8

22 / 205

When the command line returns Oracle Data Provider for .NET 2.0 will have been installed.

Getting help

Official Support

Support for myObjectiveOLAP can be obtained in a number of ways:

Licensed use and annual support direct from myObjectiveOLAP

Customers of myObjectiveOLAP with a valid license and annual support plan can create support requests
through the myObjectiveOLAP.com support portal.

http://support.myobjectiveolap.com/otrs/index.pl

The support portal also enables download of all the myObjectiveOLAP.com software including version
classified as BETA.

The support portal also enables you to search for FAQ and technical documents on the use of
myObjectiveOLAP together with example myObjectiveOLAP Excel macro workbooks.

An annual support agreement with SDMC Consulting Limited

Customers of SDMC Consulting Limited who have an annual support agreement (with a myObjectiveOLAP
clause) in place to support their in-house application are licensed for use of myObjectiveOLAP.

They should contact their assigned SDMC support representative if they have questions or problems with
myObjectiveOLAP.  If necessary they will log a Support Request on the customers behalf.

Licensed use and annual support of Escendo

Customers of Escendo Corporation's Escendo suite of products with a valid license and annual support plan
from Escendo Corporation should contact Escendo Support if they have questions or problems with
myObjectiveOLAP.  If necessary Escendo Support will escalate a Support Request to myObjectiveOLAP on
the customers behalf.

Installing

Installing myObjectiveOLAP

The following chapters will take you through installing the myObjectiveOLAP addin.

Installing myObjectiveOLAP

Installing myObjectiveOLAP

Prerequisites

Ensure you have met the prerequisite requirements.

· Oracle Data Access Provider

http://support.myobjectiveolap.com/otrs/index.pl


myObjectiveOLAP Version 2.9.8

23 / 205

· .Net Runtime environment

Double-click the Setup executable.

Press [Next]



myObjectiveOLAP Version 2.9.8

24 / 205

Choose or select the default directory location you want to install myObjectiveOLAP into.

Confirm Installation



myObjectiveOLAP Version 2.9.8

25 / 205

If you are happy with your choices press [Next]  to confirm that you want to proceed with the installation of
myObjectiveOLAP.

myObjectiveOLAP will now be installed.

Press Close

Uninstalling myObjectiveOLAP

Uninstalling myObjectiveOLAP

To uninstall myObjectiveOLAP:

 Open the Windows Control Panel.

 Select, Programs, Uninstall a Program.

Highlight the myObjectiveOLAP entry in the list of installed programs.

Choose Remove and follow the instructions.

or choose Uninstall.



myObjectiveOLAP Version 2.9.8

26 / 205

Cleaning up any setting or connection files.

If you are completely uninstalling, and not just preparing to upgrade you may wish to remove the
mooApplicationSettings.xml file, and any connection files.   These are by default stored at the following
location

C:\Documents and Settings\{username}\Local Settings\

If you are upgrading then you probably want to keep these files.   If an upgrade of your files is required
myObjectiveOLAP will prompt you to upgrade your xml file.

Upgrading from a previous version

Upgrading myObjectiveOLAP

When upgrading the myObjectiveOLAP client you should uninstall your current copy of the software and
install the newer version supplied to you.

· Uninstalling myObjectiveOLAP Client

Please follow this link for instructions on uninstalling the myObjectiveOLAP client software.  Uninstalling
myObjectiveOLAP will not remove any local client configuration files such as your connection files, or
mooApplicationSettings.xml file.

· Installing myObjectiveOLAP Client

Please follow this link for instructions on installing the myObjectiveOLAP client software.  Installing
myObjectiveOLAP will not remove any local client configuration files such as your connection files, or
mooApplicationSettings.xml file already installed from a previous installation.

· Move or copy your client configuration files.

You may wish to reuse client configuration or connection files from a previous installation.  To do this you
should copy the contents of your application data directory to your new application data directory.

Locate your local application data directory,

This is an example on Excel 2003

C:\Documents and Settings\{username}\Local Settings\Application Data\

This is an example on Excel 2010

C:\Users\{username\AppData\Local\



myObjectiveOLAP Version 2.9.8

27 / 205

Hint
The easy way to identify your current local directory is to start the myObjectiveOLAP Connection Editor and
then press "Open" this will open a file browser wizard and display the current directory location in the
location bar as shown below:

Application Configuration Files

myObjectiveOLAP Configuration Files

myObjectiveOLAP makes use of a number of configuration files.  These are split into two groups:

Application Settings

myObjectiveOLAP gives you the ability to customize the menu items that are displayed to your end-users.  
This configuration is stored in the mooApplicationSettings.xml file stored within the application user data
directory:

The file can either be deployed via a distributed software installation mechanism or configured locally on
each user PC.

Connection Files

myObjectiveOLAP makes use of a number of configuration files.  These are split into two groups:

mooApplicationSettings.xml

mooApplicationSettings.xml File.



myObjectiveOLAP Version 2.9.8

28 / 205

myObjectiveOLAP gives you the ability to customize the menu items that are displayed to your end-users.  
This configuration is stored in the mooApplicationSettings.xml file stored within the application user data
directory:

The file can either be deployed via a distributed software installation mechanism or configured locally on
each user PC.

mooApplicationSettings Editor.

When you first install myObjectiveOLAP a menu item "Application Settings Editor" will be created within the
myObjectiveOLAP menu group in Excel:

You can use the mooApplicationSettings Editor to create a new mooapplicationSettings.xml file or amend
an existing one.

 

Restricting access to the mooApplicationSettings Editor
User access to edit the mooApplicationSettings editor can be disabled, please see Restricting access to
users

Directory to save the file in:

The completed file should be placed in the directory which is represented by the LocalApplicationData
system variable.

Typically this is either one of the following directories:

C:\Users\{username}\AppData\Local

C:\Documents and Settings\{username}\Local Settings\



myObjectiveOLAP Version 2.9.8

29 / 205

Shared Settings File
Versions 2.9.4 and later only

It is supported to place the mooApplicationSettings.xml file in the directory where myObjectiveOLAP is
installed.  

You must ensure that the user has permission to read this directory.   
If two settings file are placed in LocalApplicationData & the install directory, the users personal version will
take precedence and the file saved in the install location will be ignored.  
This is primarily useful for customers using myObjectiveOLAP in a terminal or thin-client environment.   

Please note, myObjectiveOLAP is NOT supported in a terminal or thin-client
environment, however Support will offer advice to customers on a best
endeavors basis. 

Full ApplicationSettings File

Full mooApplicationSettings.xml file

The following file would enable all menu items of myObjectiveOLAP within Microsoft Excel.

Notes

See: Restricting access to users. to further lock down the menu items.

XML

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_MOOSERVER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOUSER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_ESCENDO</Key>
    <Value>TRUE</Value>
  </Settings>
</NewDataSet>

OLAP Only

OLAP only mooApplicationSettings.xml file

The following file would only enable the standard database connect screen and would hide access to
mooServer and Escendo only menu items.  
This would be a valid configuration for normal Oracle OLAP installations.

Notes

See: Restricting access to users. to further lock down the menu items.

XML

<?xml version="1.0" standalone="yes"?>
<NewDataSet>



myObjectiveOLAP Version 2.9.8

30 / 205

  <Settings>
    <Key>ALLOW_MOOSERVER</Key>
    <Value>FALSE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOUSER</Key>
    <Value>FALSE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_ESCENDO</Key>
    <Value>FALSE</Value>
  </Settings>
</NewDataSet>

mooServer - User Profile

mooServer User Profile mooApplicationSettings.xml file

The following file would enable the necessary menu items for a mooServer user profile.
This would be a valid configuration for normal myObjectieOLAP Server installations.

Notes

We do not have to restrict Escendo menu items, they are not displayed unless ALLOW_ESCENDO is
specifically set to TRUE.

 We set ALLOW_DB_CONNECT to FALSE so that the OLAP only standard connection menu is removed to
avoid confusion.

See: Restricting access to users. to further lock down the menu items.

XML

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_MOOSERVER</Key>
    <Value>FALSE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOUSER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_DB_CONNECT</Key>
    <Value>FALSE</Value>
  </Settings>
</NewDataSet>

mooServer - DBA  Profile

mooServer DBA Profile mooApplicationSettings.xml file

The following file would enable the necessary menu items for a mooServer DBA profile.
This would be a valid configuration for normal myObjectieOLAP Server installations.

Notes

We do not have to restrict Escendo menu items, they are not displayed unless ALLOW_ESCENDO is
specifically set to TRUE.

We set ALLOW_DB_CONNECT to FALSE so that the OLAP only standard connection menu is removed to



myObjectiveOLAP Version 2.9.8

31 / 205

avoid confusion.

See: Restricting access to users. to further lock down the menu items.

XML

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_MOOSERVER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOUSER</Key>
    <Value>TRUE</Value>
  </Settings>
</NewDataSet>

Escendo enabled profile

mooServer DBA Profile mooApplicationSettings.xml file

The following file would enable the necessary menu items for a mooServer DBA profile.
This would be a valid configuration for normal myObjectieOLAP Server installations.

Notes

We do not have to restrict mooServer menu items, they are not displayed unless ALLOW_MOOSERVER  or
ALLOW_MOOUSER  is specifically set to TRUE.

We set ALLOW_DB_CONNECT to FALSE so that the OLAP only standard connection menu is removed to
avoid confusion.

See: Restricting access to users. to further lock down the menu items.

XML

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_ESCENDO</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_DB_CONNECT</Key>
    <Value>FALSE</Value>
  </Settings>
</NewDataSet>

Restricting access to users

Restricting Access

Purpose

A feature request from multiple sources asked for the ability to limit the Advanced functionality from normal end-
user installs of myObjectiveOLAP.

In addition: From myObjectiveOLAP Version 1.4.7 if you wish to enable Escendo related functionality you MUST
create a mooApplicationSettings.xml file with at least the following content:

<?xml version="1.0" standalone="yes"?>



myObjectiveOLAP Version 2.9.8

32 / 205

<NewDataSet>
  <Settings>
    <Key>ALLOW_ESCENDO</Key>
    <Value>TRUE</Value>
  </Settings>
 </NewDataSet>

Administrators wishing to enable or disable functionality in myObjectiveOLAP should read this technical note.

Use:

When starting Excel for the first time after installation of myObjectiveOLAP an administrator should use the
Application Settings Editor to create an applications setting file.

To create a new settings file add a valid XML schema to the editor window:

An example of an XML schema which enables all functionality can be found  here.

To edit an existing settings file, use the Open XML Settings File menu and follow the dialog.

To save an existing settings file, use the Save XML Settings File menu and follow the dialog.



myObjectiveOLAP Version 2.9.8

33 / 205

Example: 

If an administrator wanted to limit the ability for a user to see the Session Manager screen they could create a
mooApplicationSettings.xml file with the following contents:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_OLAP_SESSION_MANAGER</Key>
    <Value>FALSE</Value>
  </Settings>
 </NewDataSet>

Keys:

A full list of customizable Key values is shown below:

Standard

ALLOW_OLAP_CONSOLE
Enables or disables the ability for an end-user to open the OLAP command and OLAP program editor windows.                              
      DEFAULT: Enabled
ALLOW_OLAP_SESSION_MANAGER 
Enables or disables the ability for an end-user to open the OLAP Session Manager window.                                                             

DEFAULT: Enabled
ALLOW_XML_SETTINGS_EDITOR
Enables or disables the ability for an end-user to open the Application Settings Manager.                                                                    
     DEFAULT: Enabled
If you wish to limit functionality you should set this to FALSE.
ALLOW_OLAP_COMMAND_BAR
Enables or disables the ability for an end-user to open the OLAP Command Bar, which would enable the end user to work-around
restrictions  DEFAULT: Enabled
ALLOW_OLAP_SCRIPT
Enables or disables the ability for an end-user to open the Read OLAP Script File window, which would enable them to execute DML
directly    DEFAULT: Enabled
ALLOW_DB_CONNECT
Enables or disables the standard login window, this is only useful if ALLOW_ESCENDO or ALLOW_MOOUSER is enabled.                 
         DEFAULT: Enabled

Escendo

ALLOW_ESCENDO          
Enables or disables the ability for an end-user to open the Escendo Connection window, or use Escendo formula in Excel.               
         DEFAULT: Disabled

mooServer

ALLOW_MOOSERVER
Enables or disables the ability for an end-user to access mooServer control screens                                                                           



myObjectiveOLAP Version 2.9.8

34 / 205

DEFAULT: Disabled
ALLOW_MOOUSER
Enables or disables the mooServer User login                                                                                                          

DEFAULT: Disabled
ALLOW_OLAP_SCHEDULER
Enables or disables the minimalist OLAP Scheduler window                                                                                                    

DEFAULT: Disabled
ALLOW_PROCESS_CONTROL
Enables or disables the complete OLAP Process Management window                                                                    

DEFAULT: Disabled
ALLOW_USER_MANAGEMENT
Enables or disables the mooServer User Management window                                                                   

DEFAULT: Disabled

If ALLOW_MOOSERVER is not set to TRUE, setting more granular controls to TRUE will have no affect.
Setting ALLOW_MOOSERVER to TRUE and then removing functionality by setting individual components to
FALSE will remove options.

An example mooApplicationSettings.xml file, which enables all myObjectiveOLAP functionality is shown below:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_ESCENDO</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOSERVER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOUSER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_DB_CONNECT</Key>
    <Value>TRUE</Value>
  </Settings>
</NewDataSet>

An example mooApplicationSettings.xml file, for myObjectiveOLAP Server users is shown below:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_MOOSERVER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_MOOUSER</Key>
    <Value>TRUE</Value>
  </Settings>
  <Settings>
    <Key>ALLOW_DB_CONNECT</Key>
    <Value>FALSE</Value>
  </Settings>
</NewDataSet>

If all advanced functionality is disabled the parent Menu Group will be disabled as well. 

Restart Excel



myObjectiveOLAP Version 2.9.8

35 / 205

You must restart Excel for the changes to update the myObjectiveOLAP menu.

Files created

Save XML Settings will allow you to create a copy of your XML file with any name, but for it to be valid it must be
named mooApplicationSettings.xml

The file must be located in the "Local User Application Data Path" directory, together with the users Connection
files.

An example of this path is shown below:

C:\Documents and Settings\myUser\Local Settings\Application Data\Microsoft Corporation\Microsoft Office 2003
\11.0.8341

Connection Files

Connecting to Oracle OLAP.

myObjectiveOLAP supports three connection types:

Standard Oracle OLAP Connection
A standard Oracle OLAP connection should be used when connecting to an OLAP environment that is
managed through Oracle's standard AWM tools and conforms to the Oracle Standard Form model.

mooServer Connection
A myObjectiveOLAP mooServer Connection supports additional server side work flow, data submission and
reporting tools.  
This type of connection should only be used with a mooServer enabled environment.

Escendo Connection
Escendo Connection supports connecting to Escendo Corporations, Escendo Suite of OLAP enabled
Reporting, Budgeting and Planning Applications.

Connecting to Oracle OLAP is covered in more detail here.

Example path

By default myObjectiveOLAP will look in the a location similar to below for pre-saved Connection Files.

C:\Documents and Settings\{username}\Local Settings\

Connecting

Connecting to Oracle OLAP.

myObjectiveOLAP supports three connection types:

Standard Oracle OLAP Connection
A standard Oracle OLAP connection should be used when connecting to an OLAP environment that is
managed through Oracle's standard AWM tools and conforms to the Oracle Standard Form model.

mooServer Connection



myObjectiveOLAP Version 2.9.8

36 / 205

A myObjectiveOLAP mooServer Connection supports additional server side work flow, data submission and
reporting tools.  
This type of connection should only be used with a mooServer enabled environment.

Escendo Connection
An Escendo Connection supports connecting to Escendo Corporations, Escendo Suite of OLAP enabled
Reporting, Budgeting and Planning Applications.

Example path

By default myObjectiveOLAP will look in the a location similar to below for pre-saved Connection Files.

C:\Documents and Settings\{username}\Local Settings\

Locate your application data directory,

This is an example on Excel 2003

C:\Documents and Settings\{username}\Local Settings\

This is an example on Excel 2010

C:\Users\{username\AppData\Local\

*Hint*
The easy way to identify your current local directory is to start the myObjectiveOLAP Connection Editor and
then press "Open" this will open a file browser wizard and display the current directory location in the
location bar as shown below:

Standard OLAP Connection

Standard Oracle OLAP Connection



myObjectiveOLAP Version 2.9.8

37 / 205

A standard Oracle OLAP connection should be used when connecting to an OLAP environment that is
managed through Oracle's standard AWM tool and conforms to the Oracle Standard Form model.

The Connection Editor is found within the main myObjectiveOLAP menu group.

Standard Connection Editor Window

The standard Connection editor window enables the user to enter connection details associated with an
Oracle OLAP enabled database instance.

The User can perform the following actions:

Open -- Open an existing connection file.
Save -- Save a new Standard Oracle OLAP connection file.
Connect -- Initiate a connection to an Oracle OLAP enabled database

instance based on the entered connection information.
Disconnect -- Disconnect from an existing connection.
Help -- Open this Help Topic.
Close -- Closes the Standard Connection Editor Window



myObjectiveOLAP Version 2.9.8

38 / 205

Standard Connection File

By default myObjectiveOLAP will look in the a location similar to below for pre-saved connection Files.

C:\Documents and Settings\{username}\Local Settings\

The following shows an example Standard Oracle OLAP Connection xml file:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>SAVE</Key>
    <Value>My Saved Bookmark</Value>
  </Settings>
  <Settings>
    <Key>SERVER</Key>
    <Value>myhost.com</Value>
  </Settings>
  <Settings>
    <Key>PORT</Key>
    <Value>1521</Value>
  </Settings>
  <Settings>
    <Key>SID</Key>
    <Value>orcl</Value>
  </Settings>
  <Settings>
    <Key>USER</Key>
    <Value>olapsys</Value>
  </Settings>
  <Settings>
    <Key>PASS</Key>
    <Value>dlasidoapsOIOPdhaoshiad==</Value>
  </Settings>
</NewDataSet>



myObjectiveOLAP Version 2.9.8

39 / 205

The following keys are stored:

Key Description
Save -- User friendly description of the connection
Server -- The hostname or IP address of the server you wish to connect to.
Port -- The port of the Oracle database instance you wish to connect to.
User -- The username of the Oracle user you wish to connect with.
PASS -- An encrypted hash of the Oracle password.

You can save a connection file with any filename supported by the Microsoft Windows file system.

If you check the Make Default option when saving a connection file  a second file called Settings.xml is
automatically created.   
Any time the Standard Connection Editor window is opened the contents of Settings.xml will be loaded if it
exists.

Displaying the Standard Connection Window from VBA

You can trigger the connection window to be displayed from within Excel VBA by calling the 
mooShowConnFrm function, as described here.

Connecting From the Console

If you have created a Default Settings.xml as described above you can type MOO CONOLAP in the OLAP
Console Command Entry Window and myObjectiveOLAP will try to automatically connect. 

Connecting From VBA

If you have created a Default Settings.xml as described above you can use the connect() function from
within Excel as described here.

Escendo Connection

Escendo Application Connection

An Escendo Connection supports connecting to Escendo Corporations, Escendo Suite of OLAP enabled
reporting, budgeting and planning applications.

The Escendo Connect, connection editor is found within the Escendo myObjectiveOLAP menu group.

Escendo Connect,  Connection Editor Window

The standard Connection editor window enables the user to enter connection details associated with an
Oracle OLAP enabled database instance.

The User can perform the following actions:



myObjectiveOLAP Version 2.9.8

40 / 205

Open -- Open an existing connection file.
Save -- Save a new Standard Oracle OLAP connection file.
Connect -- Initiate a connection to an Oracle OLAP enabled database

instance based on the entered connection information.
Disconnect -- Disconnect from an existing connection.
Close -- Closes the Escendo Connect connection window
Help -- Open this Help Topic.

Escendo Connection File

By default myObjectiveOLAP will look in the a location similar to below for pre-saved connection Files.

C:\Documents and Settings\{username}\Local Settings\

The following shows an example Escendo connection xml file:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>CONNProfile</Key>
    <Value>My Escendo BookMark</Value>
  </Settings>
  <Settings>
    <Key>APP_UNAME</Key>
    <Value>bob</Value>
  </Settings>
  <Settings>
    <Key>APP_PASS</Key>
    <Value>HeJNgRKh/dzU2/bWT3z/sw==</Value>
  </Settings>
  <Settings>
    <Key>HOST</Key>
    <Value>app.escendo.com</Value>
  </Settings>
  <Settings>
    <Key>PORT</Key>
    <Value>1521</Value>
  </Settings>
  <Settings>
    <Key>SID</Key>



myObjectiveOLAP Version 2.9.8

41 / 205

    <Value>escendo</Value>
  </Settings>
  <Settings>
    <Key>DB_UNAME</Key>
    <Value>EAUSER</Value>
  </Settings>
  <Settings>
    <Key>DB_PASS</Key>
    <Value>oGVXlXUp0SXgUweR7fDVNg==</Value>
  </Settings>
  <Settings>
    <Key>SCHEMA</Key>
    <Value>EACORE</Value>
  </Settings>
</NewDataSet>

The following keys are stored:

Key Description
CONNProfile -- User friendly description of the Escendo

connection profile
APP_UNAME -- The username of the Escendo application user
APP_PASS -- The encrypted password hash of the Escendo

application user
HOST -- The hostname or IP address of the Escendo

enabled Oracle OLAP server you wish to connect to.
Port -- The port of the Oracle database instance you

wish to connect to.
SID -- The SID of the Oracle database instance you wish

to connect to.
DB_UNAME -- The username of the database connection, this is

normally EAUSER
DB_PASS -- The encrypted password hash of the database

connection, this is normally set to never expire, 
as the user security has been delegated to the

Escendo application.
If it is changed new connection xml files must

be distributed or update on change.
SCHEMA -- This is the Oracle schema in which the Escendo

application resides.
In a default installation this is normally

EACORE.

You can save a connection file with any filename supported by the Microsoft Windows file system.

mooServer Connection

mooServer Connection

A myObjectiveOLAP mooServer Connection supports additional server side work flow, data submission and
reporting tools.  
This type of connection should only be used with a mooServer enabled environment.

The mooServer "my OLAP Login" connection editor is found within the main myObjectiveOLAP menu group.



myObjectiveOLAP Version 2.9.8

42 / 205

mooServer Connection Editor Window

The "my OLAP Login" connection editor window enables the user to enter connection details associated
with an mooServer enabled Oracle OLAP enabled database instance.

The User can perform the following actions:

Open -- Open an existing connection file.
Save -- Save a new Standard Oracle OLAP connection file.
Connect -- Initiate a connection to an Oracle OLAP enabled database

instance based on the entered connection information.
Disconnect -- Disconnect from an existing connection.
Help -- Open this Help Topic.
Close -- Closes the Standard Connection Editor Window

mooServer Connection File

By default myObjectiveOLAP will look in the a location similar to below for pre-saved connection Files.

C:\Documents and Settings\{username}\Local Settings\

The following shows an example mooServer connection xml file:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>CONNProfile</Key>
    <Value>mooServer</Value>
  </Settings>
  <Settings>
    <Key>APP_UNAME</Key>
    <Value>bob</Value>
  </Settings>
  <Settings>
    <Key>HOST</Key>
    <Value>mooserver.myobjectiveolap.com</Value>
  </Settings>
  <Settings>
    <Key>PORT</Key>
    <Value>1521</Value>
  </Settings>
  <Settings>



myObjectiveOLAP Version 2.9.8

43 / 205

    <Key>SID</Key>
    <Value>moo</Value>
  </Settings>
  <Settings>
    <Key>DB_UNAME</Key>
    <Value>mooserver</Value>
  </Settings>
  <Settings>
    <Key>DB_PASS</Key>
    <Value>jdsakldjLJKLJDASJDSKALJEEjkk</Value>
  </Settings>
</NewDataSet>

The following keys are stored:

Key Description
CONNProfile -- User friendly description of the mooServer

connection profile
APP_UNAME -- The username of the mooServer application user
HOST -- The hostname or IP address of the mooServer

enabled Oracle OLAP server you wish to connect to.
Port -- The port of the Oracle database instance you

wish to connect to.
SID -- The SID of the Oracle database instance you wish

to connect to.
DB_UNAME -- The username of the database connection, this is

normally mooserver
DB_PASS -- The encrypted password hash of the database

connection, this is normally set to never expire, 
as the user security has been delegated to the

mooServer application.
If it is changed new connection xml files must

be distributed or update on change.

Note: mooServer does not allow the storing of the application password.

You can save a connection file with any filename supported by the Microsoft Windows file system.

Graphical Tools

Graphical Tools

myObjectiveOLAP contains a number of graphical tools intended to automate and help the end-user or
developer.

These tools are split into two containers:

Standard Tools

User Tools

Analytic Workspace Selector
Application Settings Editor

Developer or DBA Tools

OLAP Console
Read OLAP Script File
Session Manager

myObjectiveOLAP Server Tools



myObjectiveOLAP Version 2.9.8

44 / 205

Please see: myObjectiveOLAP Server Tools

Analytic Workspace Selector

Analytic Workspace Selector

The Analytic Workspace Selector is found within the main myObjectiveOLAP menu group.

Notes

You can only open the Analytic Workspace Selector if you are connected to an Oracle OLAP database. If
you attempt to open it before being connected you will see the following message:

On opening the Analytic Workspace Selector you will be presented with a list of Analytic Workspaces
available to you (left List Box) and Analytic Workspaces attached already by you (right List Box).



myObjectiveOLAP Version 2.9.8

45 / 205

Attaching an Analytic Workspace

"Double Clicking" on the Analytic Workspace name in the "Analytic Workspaces Available To You" list will
attach the Analytic Workspace in Read Only mode and update the "Attached By You" list.
Alternatively, highlighting the Analytic Workspace in the "Available To You" list and pressing the Right arrow
will attach the highlighted Analytic Workspace.

Detaching an Analytic Workspace

"Double Clicking" on the Analytic Workspace name in the "Analytic Workspaces Attached By You" list will
detach the Analytic Workspace.
Alternatively, highlighting the Analytic Workspace in the "Analytic Workspaces Attached By You" list and
pressing the Left arrow will detach the highlighted Analytic Workspace.

Changing the Analytic Workspace Attach Order

If you already have the Analytic Workspace attached and wish to make a specific Analytic Workspace first
in the attached order you can "Double Click" on an Analytic Workspace name in the "Analytic Workspaces
Available To You" list. This will attach the Analytic Workspace in Read Only mode to the first position and
update the "Attached By You" list to represent this.

Session Manager

Session Manager

The Analytic Workspace Selector is found within the Advanced myObjectiveOLAP menu group.



myObjectiveOLAP Version 2.9.8

46 / 205

Notes

You can only open the Analytic Workspace Selector if you are connected to an Oracle OLAP database. If
you attempt to open it before being connected you will see the following message:

In order to use the Session Manager tool your Oracle user must have been assigned the 'ALTER SYSTEM'
privilege, otherwise you will see the following message in the Session Manager ribbon menu:

"You Do Not Have The Correct Oracle Roles to Kill Sessions"

On opening the Session Manager with the correct privilege you will be presented with a list of OLAP
Sessions.

The OLAP Session Manager lists the following information:

SID:SERIAL
AW
MODE
Client PC Name
Database User
OS User Client
Database Node the client is connected to
Logon time
Last executed SQL

Killing a Session

Highlighting a SSESID and pressing Kill Session will attempt to kill the highlighted session by executing the
following SQL Statement:



myObjectiveOLAP Version 2.9.8

47 / 205

ALTER SYSTEM KILL SESSION [SSESID]

If you check the Force Kill option before pressing Kill Session will execute the following SQL Statement:

ALTER SYSTEM DISCONNECT SESSION [SSESID]

After killing the session the Session List will be refreshed.

You can not kill your own session.

OLAP Session
In order for an Oracle session to be classed as an OLAP Session a single OLAP DML statement must have
been executed, this includes attaching an Analytic Workspace.

Application Settings Editor

mooApplicationSettings.xml File.

myObjectiveOLAP gives you the ability to customize the menu items that are displayed to your end-users.  
This configuration is stored in the mooApplicationSettings.xml file stored within the application user data
directory:

The file can either be deployed via a distributed software installation mechanism or configured locally on
each user PC.

Please see mooApplicationSettings.xml topic for sample configuration files.

mooApplicationSettings Editor.

When you first install myObjectiveOLAP a menu item "Application Settings Editor" will be created within the
myObjectiveOLAP menu group in Excel:

You can use the mooApplicationSettings Editor to create a new mooapplicationSettings.xml file or amend
an existing one.



myObjectiveOLAP Version 2.9.8

48 / 205

 

Restricting access to the mooApplicationSettings Editor
User access to edit the mooApplicationSettings editor can be disabled, please see Restricting access to
users

Example path

C:\Users\{username}\AppData\Local

OLAP Console

OLAP Console

The OLAP Console is found within the main myObjectiveOLAP menu group.

The OLAP Console enables a user or developer to execute Oracle OLAP DML directly within the database. 
It also enables the editing of OLAP programs.

Use of the OLAP Console.



myObjectiveOLAP Version 2.9.8

49 / 205

Commands are entered in the Command Entry Window.

Use of the OLAP Console.

Commands entered into the command entry window are stored for the current session in the command
recall window:



myObjectiveOLAP Version 2.9.8

50 / 205

The following keys are used with the Recall window:

F2 Opens the Recall window.
Cursor keys (up/down) Navigate up and down the list of recalled

commands.
ENTER Flag a specific command as to executed again. 

Un-flag commands previously selected.
F10 Close the recall window and execute commands

flagged.
Commands are executed in order of recall NOT

selection.
ESCAPE Close the recall window do not execute any

commands flagged.

Commands are split into three types:

Oracle DML Statements

Oracle DML statements can be entered and output from the Oracle OLAP engine viewed.

*Warning* - Unlike legacy XCA or SNAPI protocols, Oracle will attempt to display potentially very large
volumes of data. 
 Ensure you are sure of the status of any variable before executing a report (rpr) DML statement.

MOO Script

Entering "MOO HELP¿" in the command window lists a series of MOO commands.

MooScript HELP, Warning this is not supported
----------------------------------------------
disconOlap (0)     --  Disconnects Oracle
conOlap            --  Reads Saved XML and Connects to Oracle
CLS                --  Clears the screen
Debug              --  Toggles debugging on and off
Scroll             --  Scrolls Down
ALL_AWS            --  Diagnostics on AWs Available



myObjectiveOLAP Version 2.9.8

51 / 205

To execute any of the commands above prefix them with MOO:

Example:

MOO CONOLAP

Would read a pre-saved settings.xml file and connect to Oracle OLAP.

Local Commands

LOTF

Issuing an LOTF [LOCAL_PATH\File] command will direct all future output to the designated file.  
Local outfile can be disabled by issuing a LOTF EOF (End Of File) statement.

Example:

LOTF c:\myObjectiveOLAP.txt
shw tod
LOTF EOF

Edit (edt)

Issuing "edit [program_name]" in the command entry window will open the OLAP DML Editor window
populated with the code for the program passed as an argument.

A number of menu items are available to you in the OLAP DML Editor window

Save          --  Saves any changes made to the current
program back to the Analytic Workspace
Save and Quit    --  Saves any changes made to the current
program back to the Analytic Workspace

     and closes the OLAP DML Editor window.
Quit without Saving        --  Close the current OLAP DML Editor window,
changes made to the current program 
        are not saved back to the Analytic
Workspace.
Reload program from the database --  Reloads the currently edited program from
the Analytic Workspace
                                     , changes are discarded.
Highlight My Code    --  Color highlights:  Comments, Commands,
Functions.

*Warning* - Save and Save and Quit,  does not change the attached mode of your Analytic Workspace, if
you are Read Only your program will be saved back to the AW but will not be Read Write saved.
*Warning*  - Save and Save and Quit, does not execute an "upd; commit" you are responsible with
permanently updating your Analytic Workspace. 



myObjectiveOLAP Version 2.9.8

52 / 205

Previously edited program names are stored in the menu drop down box.   Selecting a program from the
drop down menu causes the program editor to open the program.

Notes

Commands executed through the OLAP Console can be seen by the Oracle OLAP recap command.

Restricting access to the OLAP Console.

Access to the OLAP Console can be restricted by creating an ALLOW_OLAP_CONSOLE settings key
within the mooApplicationSettings.xml file and flagging the key as FALSE.

The following mooApplicationSettings.xml example would disable the OLAP Console.   By default the OLAP
Console is enabled.

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
  <Settings>
    <Key>ALLOW_OLAP_CONSOLE</Key>
    <Value>FALSE</Value>
  </Settings>
 </NewDataSet>

Oracle OLAP DML Editor

Oracle OLAP DML Editor

From within the myObjectiveOLAP OLAP Console you can edit Oracle OLAP objects such as:

§ Programs
§ Aggmaps
§ Models
§ Single cell variables

Two commands exist in order to initialise the Editor window:

OLAP Console Command Edited Object

EDIT [EDT] · Programs

· Aggmaps

· Models

EDITV [EDTV] Single Cell Variables

Editor

myObjectiveOLAP includes a modern, fast and feature rich editor for manipulating and creating the Oracle
OLAP object types above.  It is able to open and syntax highlight Oracle OLAP DML programs, thousands
of lines long in less than a second.



myObjectiveOLAP Version 2.9.8

53 / 205

Functionality Overview

Ribbon Menu Option Purpose

Name of the object being edited

Saves the contents of the edited object back to the Oracle OLAP Analytic

Workspace

Saves the contents of the edited object back to the Oracle OLAP Analytic

Workspace, and then exits the editor

Exits the editor without saving any changes back to the Oracle OLAP

Analytic Workspace

Refreshes the last saved version of the object back into the editor

Marks all rows that are changed from that point forward:

 

Stops tracking changes to the object

Starts the Find tool.  See below for more information.



myObjectiveOLAP Version 2.9.8

54 / 205

Starts the Replace tool.  See below for more information

Starts the code printing engine

Enables or disables the code window splitter

Goto a specific row number within your code

Code Formatting

As you can see below the myObjectiveOLAP code Editor automatically formats as you type based on the
Oracle OLAP lexicon.

Row Numbers, Current and Highlighted Rows

myObjectiveOLAP adds row numbers to the editor window to aide navigation.  

The row you are currently editing is highlighted as below:

If you select multiple rows this is highlighted thus;

With the code highlighted and a red vertical bar on the left hand-side.

Code Splitter Tool

It can often be useful when editing large programs to be able to split your code window, the
myObjectiveOLAP DML editor supports this functionality:

At the top of the Editor window you will see 5 small dots:



myObjectiveOLAP Version 2.9.8

55 / 205

Grab the dots with your mouse and pull the pane down:

As you can see from above we are able to see our variable declarations (rows 9 -- 14) but then in the lower
pane we have been able to scroll further down in the code.

Quick Info

Oracle OLAP DML is one of the richest programming languages available.   The myObjectiveOLAP editor
helps you remember the subtleties of the language by prompting you with syntax when it recognizes a key
DML phrase.  This is designed to enable you to utilize Oracle OLAP quicker, by enabling faster coding with
fewer mistakes.

Examples of this feature is shown below.



myObjectiveOLAP Version 2.9.8

56 / 205

Find and Replace Tools

The Find tool enables fast searching for strings within an Editor window, as well as finding it also can Mark
all occurrences of a specific search criteria. 

In the following example we have searched for "shw" and the Editor window has now displayed a blue cube
against the row where the criteria has been found:



myObjectiveOLAP Version 2.9.8

57 / 205

To clear our bookmarks we can right-click, and clear then through the Bookmarks --> Clear Bookmarks
menu:

As you would expect the Editor also contains a fully featured Find and Replace tool which is able to find and
replace based on Case, Whole Words or Regular Expressions

Auto outlining



myObjectiveOLAP Version 2.9.8

58 / 205

Whilst editing code it is important to quickly and easily be able to see the start and end of   "While" "For" 
"Then Do/Doend".  The Editor makes this easy by showing you which loop you are working within at any
time:

In the following example we can see immediately the start and end of the "While" loop 

The editor handles nested loops with ease as shown below:

And we are able to hide the loops we are not interested in, as shown below; by pressing the + icon next to
the start of the loop:



myObjectiveOLAP Version 2.9.8

59 / 205

Right Click Options

Edit

Standard options for text manipulation can be found under Edit:

File

You may not always want to save the contents of your Editor to the database, you can Open, Save and
Print from the File menu.   Saving and Opening allows you to save to a file on your local file system:

Advanced

Advanced allows you to carry out some tasks on multiple rows of code very quickly.



myObjectiveOLAP Version 2.9.8

60 / 205

For example:

Indent the last two lines:

Comment (or uncomment) a lot of code at once:

Collapse all your loops:

Bookmarks

Bookmarks allow you to manage your bookmarks, either ones put there automatically through the Find tool
or manual bookmarks you have added to the code editor via Ctrl+F2



myObjectiveOLAP Version 2.9.8

61 / 205

Options

Options allow you to fine tune your editor window, such as View Whitespace:

or to fine-tune the Auto-indent feature:

EditorV

EDTV is used to edit variables as shown below:

> dfn myvrb vrb text

> myvrb = NA

> edtv myvrb



myObjectiveOLAP Version 2.9.8

62 / 205

Enter some text and Save and Quit:

> shw myvrb
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9

Read OLAP Script File

Read OLAP Script File

The Read OLAP Script File menu is found within the Advanced myObjectiveOLAP menu group.

Read OLAP Script File enables a user, developer or DBA to execute a list of OLAP DML statements from a
text file stored locally on the users PC.

Files should be stored with a .moo extension.



myObjectiveOLAP Version 2.9.8

63 / 205

Use of Read OLAP Script File.

Selecting the Read OLAP Script File menu item opens the File Open dialog window.

Select a .moo file and press Open.

In this example our script1.moo file contains the following:

shw tod
aw list
aw attach express ro first
shw lmt(name to first 10)

All commands are sent to the myObjectiveOLAP Command Preprocessor and executed against Oracle
OLAP.

On completion the following dialog box is presented. 



myObjectiveOLAP Version 2.9.8

64 / 205

Output from the Oracle OLAP engine is saved in a filename.moo.out file in the same directory as the source
script.

shw tod
16:00:33
aw list
EXPRESS   R/O UNCHANGED SYS.EXPRESS
aw attach express ro first

shw lmt(name to first 10)

_XLTID_XLTABLE_SHADOW_LNTYPEPRGTRACEBADLINE_DUMPSYNTAX_DUMPCODEINF_STOP_ON_ERR
_OBJECTPROTECT

*Warning* - myObjectiveOLAP sends each line of a source filename.moo file to the myObjectiveOLAP
preprocessor for execution in the Oracle OLAP environment. 

     Processing of the file does not stop even if there is an error in the source DML.

     You should review the filename.moo.out file before issuing any update; commit statements.  
     Test your code throughly before placing update; commit statements in a source filename.moo

file.

Relational Explorer

 
Relational Explorer

Relational Reporter allows you to build a query which will extract data from a Table or View from within your
myObjectiveOLAP enabled Oracle Database. 

The Builder topic shows you how to do this using the graphical tools, and the Freehand SQL topic will show
you how to do the same thing using SQL (Structured Query Language).



myObjectiveOLAP Version 2.9.8

65 / 205

Using Relational Explorer

Using Relational Explorer

Ribbon Menu

Ribbon Menu Options Purpose

Open a previously saved report definition

Save the current query as a report definition

Discard the current query and start a new one

Run the current query

Save the report data to a file in Excel
format

Get Help information

Exit to myObjectiveOLAP

Relational Explorer initially opens with a New Report

Immediately below the Ribbon menu is a panel showing a SQL query (Select …). This will be dynamically
generated as you work. SQL is covered in more detail in the Freehand SQL topic. 



myObjectiveOLAP Version 2.9.8

66 / 205

Below the SQL panel are two large panels. The left panel allows you to select your data for the report. The
right panel is a work area known as the Canvas, in which you can build your query.

The main tool is broken into four work areas:

Work Area Purpose

Provides a graphical tool for building your report.

Allows you to type in your query directly, using SQL.

Allows you to include header and footer information.

Displays the report after you click Run

Builder

Builder

Builder is a graphical environment to aide you in creating reports without requiring any prior knowledge of
SQL or relational databases.

When you select the Builder panel from the menu, your Selection Work Area is further divided into sub
panels:

Panel Purpose

Tables Select a single table from which to read data

Columns Select one or many columns of data from the selected table. 
To select columns, drag and drop them individually into the
Canvas area to the right.

Clauses Provide tools to refine your selection

Tables

Tables are used to store your data in specific logical areas. A table consists of Columns and Rows of data.
Columns may contain different types of data, such as text, numbers and dates, and this affects the kinds of
selections you can perform.

Your report will consist of data from one Table. Select a table by checking the appropriate box.



myObjectiveOLAP Version 2.9.8

67 / 205

Columns

The Columns panel allows you to select columns in the table for displaying as columns in your report. Use
drag and drop to pull selected columns into the Canvas area to the right.

When you have selected columns, you can rearrange the order of your selection within the Canvas area by
dragging and dropping. 

To remove a column, drag it to the bin symbol below the Canvas.

Clause

Clause allows you to further refine the appearance of your report. There are 3 choices available.

· 'Where' is the main tool for filtering rows from the table, based on the content of a selected column.

· 'Or' allows you to extend a "where" phrase to include selections from more than one column.

· 'Order' allows you to sort the rows of the report based on values in one or more columns.

'Where' allows you to limit your data according to the contents of any column you choose.  Choose the
'Where' clause by dragging it into the Canvas pane. Then switch to the Columns tab, choose a column and
drag it into the 'Where' part of the Canvas. You will then see two fields appear, a comparison operator drop-
down choice field and a free text field.

In the following example, the ‘Equal To' operator is used with the Value of "SALESMAN" for column JOB.



myObjectiveOLAP Version 2.9.8

68 / 205

The drop-down field offers these choices (comparison operators):

Value Operator Search Field

= Equal to Value

In In the list List of values

>  Greater than Numerical value

<  Less than Numerical value

<>  Not equal to Numerical value

Not in Is not in the list List of values

!= Not equal to Value

Like Matches a search string Search string

Is null Is an empty field

Is not null Is not an empty field

To add a further selection, select the Clause sub-tab and drag and drop the 'Or' operator into the 'Where'
panel (drop into the grey part of the 'where' box, not the blue part relating to the chosen field). Then choose
another column and comparison operator as before. You can have more than one 'Or' phrase in a 'Where'
clause.

To sort your report, drag and drop the 'Order' operator into the Canvas. Then in the Columns sub-tab select a
column and drag and drop it into the 'Order' box in the Canvas. You can include more than one column in
the Order box. The first in the list is the primary sort column.

The value you type in the Search field must match the type of data in the chosen column.

The 'In' operator allows you to select values which match a list. To input the list, use the [Enter] key to put
values on separate lines.

The 'Like' operator allows you to find inexact matches by incorporating ‘wild-cards' into your search string.

· % matches any group of characters (including none at all). 
                          For example LIKE Jon% matches Jon, Jones and Jonathan but not John. LIKE %es%
matches any text containing the sequence es.

· _ (underscore) matches any single character. For example, Like _123% matches A123456
and B1236 but not 1237.

Less than (<) and Greater than (>) can be used with text columns, and refer to alphabetically before and
after.

Viewing your report

Viewing your report



myObjectiveOLAP Version 2.9.8

69 / 205

To view the result of the query you have built, use the Run option from the main menu.

There are two types of report layout available:

· Grouping Report 
             This provides more flexibility, and allows you to manipulate the report layout when viewing the
report.

· Big Data Report
            This has less flexibility but is more suitable for large volumes of data.

These are covered in more detail below

The example below is a Grouping report from a table of employee data:

The report is in the My Report panel. You can switch between this and the Builder tab by clicking on the
panel headings.

You can manipulate the report in the following ways:

· Adjust column widths by dragging the boundaries between column headers.

· Change the order of columns by dragging the column header and dropping it between other



myObjectiveOLAP Version 2.9.8

70 / 205

columns.

· Sort the data by clicking once on the column header. Click again to sort the data in the reverse
order.

· Select data using the drop-down boxes just below the column headers. This allows you to select all
occurrences of one instance, including the occurrence of empty fields.

· Check the ‘Show Dynamic Filter' box to provide further selection features. These appear as
additional filter tools in the column headers.

            

· Drag a column heading into the Grouping box above the column headers. This organises the rows
into groups. Click on the [+] symbol by the group to expand it into its constituents.

· You can include more than one group.

The example below shows the employee table grouped by job within Department (DEPTNO). The Salesman
job is expanded into its 4 employees.

The example below shows the same data displayed as a Big Data Report.



myObjectiveOLAP Version 2.9.8

71 / 205

There are very few formatting options, but the Big Data report will give better performance when used with
very large volumes of data.

The formatting options available are:

· Clicking on the column header sorts the report by that column.

· You can adjust column widths by dragging the boundaries between column headers.

Freehand SQL

Freehand SQL

You can gain an understanding of SQL by checking the SQL panel of the Relational Explorer while using the
Builder tool.

An experienced SQL user can develop reports more quickly by crafting a SQL query directly into the
Freehand SQL panel, accessed from Freehand SQL.

In the Freehand SQL panel, check the Freehand SQL box to indicate to Relational Explorer that it should
use this method only (the Builder tool is disabled until this box is unchecked).

Type a SQL statement into the editor panel. Use the Run button as normal to run your report.



myObjectiveOLAP Version 2.9.8

72 / 205

You can create multiple statements within the Freehand SQL panel, if multiple statements are entered
Relational Explorer will run the selected statement:

Saving Data to a file

Saving to data to a file

You can export the results of your query by using the Save to File Ribbon menu item:



myObjectiveOLAP Version 2.9.8

73 / 205

Before saving your data, you must use the Run option; this retrieves the data into Relational Explorer

Based on the type of report you have run, and the size of the data-set retrieved you will be able to export
directly to a Microsoft Excel file form or a comma separated (csv) file.

Saving to a file opens a Windows file dialog box, and saves the data to the location you have specified and
the filename you have entered. This can then be opened in Excel.

Options

The options panel allows you to specify a Header and Footer descriptive text field for your report when
extracting to a file.   By default, the footer shows the date and time when you retrieved the data from the
database.

Saving your report definition

Saving and opening your report definition

These options allow you to save or retrieve your reports as definition files for use later. They do not save the



myObjectiveOLAP Version 2.9.8

74 / 205

data, only the selection and layout of the report.

The following options are available on the main menu of the Relational Explorer.

Save your current work to a report definition file (the file extension is ..rxml).

Open a previously saved report for display or to continue developing it.

These options open a standard Windows dialog box which will allow you to choose a file and location or
locate an existing file:

You can freely distribute the report definition rxml file, in the above case "my report definition.rxml" which I
have saved to the Desktop to any of your colleagues with access to the same myObjectiveOLAP Server
installation.   Provided their access credentials allow them access to the data objects defined within the
report they will be able to Open and run the report.

The following shows the contents of a report definition file used to construct a report on the demo
SCOTT.EMP table.  No report result data is stored in the report definition file.

<?xml version="1.0" encoding="utf-8"?>
<VSQL_SaveReport xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <SelectedTable>SCOTT.EMP</SelectedTable>
  <AllColumns>
    <VSQL_ColumnDT>
      <ColName>EMPNO</ColName>
      <ColDataType>System.Decimal</ColDataType>
    </VSQL_ColumnDT>
    <VSQL_ColumnDT>
      <ColName>ENAME</ColName>
      <ColDataType>System.String</ColDataType>
    </VSQL_ColumnDT>
    <VSQL_ColumnDT>
      <ColName>JOB</ColName>
      <ColDataType>System.String</ColDataType>
    </VSQL_ColumnDT>
    <VSQL_ColumnDT>
      <ColName>MGR</ColName>
      <ColDataType>System.Decimal</ColDataType>
    </VSQL_ColumnDT>
    <VSQL_ColumnDT>
      <ColName>HIREDATE</ColName>
      <ColDataType>System.String</ColDataType>
    </VSQL_ColumnDT>
    <VSQL_ColumnDT>
      <ColName>SAL</ColName>
      <ColDataType>System.Decimal</ColDataType>
    </VSQL_ColumnDT>



myObjectiveOLAP Version 2.9.8

75 / 205

    <VSQL_ColumnDT>
      <ColName>COMM</ColName>
      <ColDataType>System.Decimal</ColDataType>
    </VSQL_ColumnDT>
    <VSQL_ColumnDT>
      <ColName>DEPTNO</ColName>
      <ColDataType>System.Decimal</ColDataType>
    </VSQL_ColumnDT>
  </AllColumns>
  <SelectedColumns>
    <string>EMPNO</string>
    <string>ENAME</string>
    <string>JOB</string>
  </SelectedColumns>
  <WhereClauses>
    <VSQL_OperandsDT>
      <ColumnDataType>System.String</ColumnDataType>
      <IsColumn>true</IsColumn>
      <Symbol>=</Symbol>
      <Enclose>false</Enclose>
      <Quote>false</Quote>
      <Values>
        <string>SALESMAN</string>
      </Values>
      <Value>SALESMAN</Value>
      <Column>JOB</Column>
    </VSQL_OperandsDT>
  </WhereClauses>
  <OrderClauses>
    <VSQL_OperandsDT>
      <IsColumn>false</IsColumn>
      <Enclose>false</Enclose>
      <Quote>false</Quote>
      <Values />
      <Value />
      <Column>JOB</Column>
    </VSQL_OperandsDT>
  </OrderClauses>
  <GroupClauses />
  <ManualSQLChecked>false</ManualSQLChecked>
  <IncludeHeader>true</IncludeHeader>
  <IncludeFooter>true</IncludeFooter>
  <IncludeColumnHeader>false</IncludeColumnHeader>
  <ReportHeader>my SQLTEXT Report</ReportHeader>
  <ReportFooter>Fri 10 Jan 2014 - 09:19:18</ReportFooter>
</VSQL_SaveReport>

Microsoft Excel Functions

Microsoft Excel Functions

The following functions enable the end user to directly reference data stored within an Analytic Workspace
variable from within an Excel worksheet function.

All examples use Oracle Corporation's GLOBAL Analytic Workspace demo which can be downloaded from
the Oracle OTN website.

mooDesc

=mooDesc(“[dim]” “[dimval]”) 

Returns the Long Description of a dimension value for a given dimension.  

Requires the Analytic Workspace meta-data to conform to Oracle OLAP standard form definition.  
Alternatively, this function can be used after the application DBA defines a formula text variable with the
name [DIMENSION]_LONG_DESCRIPTION which references the non-standard named description variable.



myObjectiveOLAP Version 2.9.8

76 / 205

Syntax

=mooDesc("[dim]", "[dimval]") 

Return Value

STRING

Example

=mooDesc("CUSTOMER", "ACCOUNT_BAVARIAN IND")

Example Output

Bavarian Industries

mooCellQDR

=mooCellQDR(“[CUBE]”, “[dim1]”, “[dim1value]”, “[dim2]”,
“[dim2value]”, etc....) 

Returns the numeric result of a qualified data reference from a numerical variable within an Analytic
Workspace.

Syntax

=mooCellQDR("[CUBE]", "[dim1]", "[dim1value]", "[dim2]",
"[dim2value]", etc....) 

Return Value

DECIMAL

Example

=mooCellQDR("UNITS_CUBE_COST", "CUSTOMER", "ACCOUNT_BAVARIAN IND", "TIME", "MONTH_2006.02",
"CHANNEL", "TOTAL_TOTAL", "PRODUCT", "TOTAL_TOTAL")

Example Output

41822.97

Date Type

Windows Data
Type

Nominal storage
allocation

Value range

System.Decim
al

16 bytes 0 through +/-
79,228,162,514,264,337,593,543,950,335 with no
decimal point; 
0 through +/-7.9228162514264337593543950335
with 28 places to the right of the decimal;
smallest nonzero number is 
+/-0.0000000000000000000000000001 (+/-1E-28).

Limitations

· Can only be used to return numerical data, TEXT / STRING data must be returned using the
mooCellQDRTs() function.



myObjectiveOLAP Version 2.9.8

77 / 205

· mooCellQDR cannot be seen interacting with the OLAP engine through the Oracle OLAP RECAP
DML statement.  

· myObjectiveOLAP supports retrieving data using mooCellQDR on cubes with between 1 and 14
dimensions.

mooCellQDRT

=mooCellQDRT(“[CUBE]”, “[dim1]”, “[dim1value]”, “[dim2]”,
“[dim2value]”, etc....) 

Returns the text result of a qualified data reference from a text variable within an Analytic Workspace.

Syntax

=mooCellQDRT("[CUBE]", "[dim1]", "[dim1value]", "[dim2]",
"[dim2value]", etc....) 

Return Value

STRING

Example

=mooCellQDRT(SYS.CFG, SYS.ROW, "FAILED_PASSWORD_LOCK", SYS.COL, "VALUE")

Example Output

YES

Limitations

· Can only be used to return TEXT data, numerical data must be returned using the mooCellQDR()
function.

· mooCellQDRT cannot be seen interacting with the OLAP engine through the Oracle OLAP RECAP
DML statement.  

· myObjectiveOLAP supports retrieving data using mooCellQDRT on cubes with between 1 and 14
dimensions.

mooQT

=mooQT(“[TEXT_VARIABLE_NAME]([DIMENSION_NAME]
'[DIMENSION_VALUE]')”) 

Returns textual data from an Oracle OLAP TEXT cube or variable.

When you know the data type of a variable is TEXT you should use mooQT instead of mooQ in order to
maximize performance of retrieved data.  

Syntax
=mooQT("[TEXT_VARIABLE_NAME]([DIMENSION_NAME]



myObjectiveOLAP Version 2.9.8

78 / 205

'[DIMENSION_VALUE]')") 

Return Value

STRING

Example

=mooQT("CUSTOMER_LONG_DESCRIPTION(CUSTOMER 'ACCOUNT_CICI-D')")

Example Output

CiCi Douglas

Limitations

· Can only be used to return TEXT data, numerical data must be returned using the mooCellQN or
mooQ function.

Data Types permissible with mooQN

TEXT

· mooQT cannot be seen interacting with the OLAP engine through the Oracle OLAP RECAP DML
statement.  

If you are unsure as to why a specific mooQT retrieve is failing, the end-user can switch to mooQ in
order to see the interaction with the Oracle OLAP option.

· myObjectiveOLAP supports retrieving data using mooQT on Oracle OLAP cubes of all dimension
numbers.

mooQN

=mooQN(“[NUMERIC_VARIABLE_NAME]([DIMENSION1_NAME]
'[DIMENSION_VALUE]')”) 

Returns numerical data from an Oracle OLAP numerical cube or variable.

When you know the data type of a variable is numeric you should use mooQN instead of mooQ in order to
maximize performance of retrieved data.  

Syntax
=mooQN("[TEXT_VARIABLE_NAME]([DIMENSION_NAME]

'[DIMENSION_VALUE]')") 

Return Value

DECIMAL
Example

=mooQN("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME
'MONTH_2006.02'  channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL' )")

Example Output

41,823

Limitations



myObjectiveOLAP Version 2.9.8

79 / 205

· Can only be used to return NUMERIC data, numerical data must be returned using the mooCellQN or
mooQ function.

Data Types permissible with mooQN

INTEGER
SHORTINTEGER
LONGINTEGER
DECIMAL
SHORTDECIMAL
NUMBER

· mooQN cannot be seen interacting with the OLAP engine through the Oracle OLAP RECAP DML
statement.  

If you are unsure as to why a specific mooQN retrieve is failing, the end-user can switch to mooQ in
order to see the interaction with the Oracle OLAP
         option.

· myObjectiveOLAP supports retrieving data using mooQN on Oracle OLAP cubes of all dimension
numbers.

mooQ

=mooQ(“[VARIABLE_NAME]([DIMENSION1_NAME]
'[DIMENSION_VALUE]')”) 

Returns numerical data (as String) or text data from an Oracle OLAP cube or variable.

When you know the data type of a variable is numeric or text you should use mooQN or mooQT instead of
mooQ in order to maximize performance of retrieved data.  

Syntax
=mooQ("[TEXT_VARIABLE_NAME]([DIMENSION_NAME]

'[DIMENSION_VALUE]')") 

Return Value

STRING
Example

=mooQ("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME
'MONTH_2006.02'  channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL' )")

=mooQ("CUSTOMER_LONG_DESCRIPTION(CUSTOMER 'ACCOUNT_CICI-D')")

Example Output

41823
CiCi Douglas

Notes

· Slower than data type specific myObjectiveOLAP Excel formula

Data Types permissible with mooQ

ALL (with the exception of RAW)

· mooQ can be seen interacting with the OLAP engine through the Oracle OLAP RECAP DML



myObjectiveOLAP Version 2.9.8

80 / 205

statement.  

· myObjectiveOLAP supports retrieving data using mooQ on Oracle OLAP cubes of all dimension
numbers.

mooW

=mooW(“[VARIABLE_NAME]([DIMENSION1_NAME]
'[DIMENSION_VALUE]')”, [VALUE], [OPTION]) 

Enables cell based write back of data to an Oracle OLAP variable within an Analytic Workspace.

Syntax
=mooW("[VARIABLE_NAME]([DIMENSION1_NAME] '[DIMENSION_VALUE]')",

[VALUE], [OPTION]) 

Return Value

OBJECT
Arguments

The mooW function is called through three arguments:

Qualified Data Reference
  

    The first component is a qualified data reference indicating a unique triangulated coordinate within
an Oracle OLAP Analytic Workspace variable.

      =mooW("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME 'MONTH_2006.02'
 channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL')", 10, 0)

  In the example above we are triangulating within the UNITS_CUBE_COST to a single cell, the
intersection of the specified Customer, Channel, Time and Product dimensions.

User Supplied value.

  This is the value you wish to upload to the specified intersecting co-ordinates within the OLAP
variable.

=mooW("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME 'MONTH_2006.02' 
channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL')", 10, 0)

This can be a cell reference to a value within another Excel cell, worksheet or workbook.

Option

=mooW("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME 'MONTH_2006.02' 
channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL')", 10, 0)

   The third argument tells the mooW function what you want to do:

Option   0
 

     Passing 0 does nothing on re-calculation of the Excel formula, other than display the value
passed as the User Supplied value.

     This can be useful when working disconnected from the Oracle OLAP data source.

Option   1



myObjectiveOLAP Version 2.9.8

81 / 205

     Passing 1 writes the User Supplied value back to the Oracle Analytic workspace variable to
the intersection supplied in the Qualified Data
                        Reference.

Option   2

     Passing 2 essentially converts the mooW function into the mooQ function and retrieves the
data supplied by the Qualified Data Reference
                        from the intersecting co-ordinates within the Oracle OLAP Analytic Workspace variable.    
         

Data Types permissible with mooQ

ALL (with the exception of RAW)

Example

Option   0 Show the local user supplied value

=mooW("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME
'MONTH_2006.02'  channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL')", 10, 0)

     Option   1 write the user supplied value back to the database

=mooW("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME
'MONTH_2006.02'  channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL')", 10, 1)

     Option   2 shows the database value

=mooW("UNITS_CUBE_COST ( customer 'ACCOUNT_BAVARIAN IND' TIME
'MONTH_2006.02'  channel 'TOTAL_TOTAL' product 'TOTAL_TOTAL')", 10, 2)

Example Output

10
10
10

Notes

· mooW can be seen interacting with the OLAP engine through the Oracle OLAP RECAP DML
statement.  

· myObjectiveOLAP supports retrieving and writing of data using mooW on Oracle OLAP cubes of all
dimension numbers.

· No mechanism is supplied to permanently store the written data within the Analytic workspace. This
could easily be accomplished by the end-user or
         developer by  using a VBA macro which makes a call through the 

run_nonQ function to attach the AW RW, followed by the data upload, an update; commit and a call
to mooAWDetach. 

Alternative controlled and audited write back is available as part the mooServer or Escendo server
side products.

Manipulating Oracle OLAP from Microsoft Excel VBA

myObjectiveOLAP Object Orientated VBA Model



myObjectiveOLAP Version 2.9.8

82 / 205

myObjectiveOLAP exports functions to Microsoft Excel which can be taken advantage of by users of
Microsoft's Excel VBA model.

Common Functions

Common functions enable the end user to interact either with the myObjectiveOLAP library itself or to
execute commands or retrieve output from the Oracle OLAP database server.

Setting OLAP Options

myObjectiveOLAP allows the VBA user to set Options within the Oracle OLAP environment

myObjectiveOLAP Graphical API

The myObjectiveOLAP Graphical API allows the VBA user or developer to integrate standard
myObjectiveOLAP windows forms into their own application.

Common Functions

Common Functions

Common functions enable the end user to interact either with the myObjectiveOLAP library itself or to
execute commands or retrieve output from the Oracle OLAP database server.

This includes a number of low level API's that do minimal checking before attempting to execute within the
server side environment. It is best practice to only use these API's if myObjectiveOLAP does not offer a
standard function which meets your requirement. 
By using the myObjectiveOLAP functions in your code additional pre-execution checks are performed and
enhanced error trapping is available to you.

Handling Connections

connect

connect()

Initiates a connection to an Oracle OLAP instance. Requires a valid XML connection file to have been
created in advance.

Syntax

  connect()

Return Value

BOOLEAN

Example



myObjectiveOLAP Version 2.9.8

83 / 205

Public Sub connect()
'Actually does the connection

If Not oregistered Then:   boo = regQ:
boo = o.connect

If boo = True Then
  MsgBox "Connected OK"
Else
  MsgBox "Not Connected"
End If

End Sub 

connected

connected()

Returns TRUE if a current connection is open to an Oracle OLAP instance.

Syntax

connected 

Return Value

BOOLEAN

Example

Public Sub connected()
'Am I connected

If Not oregistered Then:   boo = regQ:
boo = o.connected

If boo = True Then
  MsgBox "Yes, Connected"
Else
  MsgBox "No, Not Connected"
End If

End Sub

connectSpec

connectSpec( “[host]” “[sid]” “[port]” “[user]” “[password]” )

Initiates a connection to an Oracle OLAP instance.  Unlike connect a valid XML connection file is not
required.  However the developer must provide the necessary connection information during the function call.

Syntax

connectspec("[host]" "[sid]" "[port]" "[user]" "[password]")

Return Value

BOOLEAN

Example



myObjectiveOLAP Version 2.9.8

84 / 205

Public Sub connectSpec()
'Create a manual connection without a connection xml file

Dim hostname  As String
Dim sid As String
Dim port As String
Dim username As String
Dim password As String

If Not oregistered Then:   boo = regQ:
  
hostname = "yourHostName"
sid = "yourSid-orcl"
port = "yourPort-1521?"
username = "yourUserName"
password = "yourUserPassword"

boo = o.connectSpec(hostname, sid, port, username, password)

If boo = True Then
 MsgBox "Connected OK"
Else
 MsgBox "Not Connected"
End If

End Sub

disconnect

disconnect()

Closes the current connection to an Oracle OLAP instance.  No further Analytic Workspace operations are
carried out including DML detaching the analytic workspace.

Syntax

disconnect

Return Value

BOOLEAN

Example

Public Sub disconnect()
'Disconnects Excel From Oracle OLAP

If Not oregistered Then:   boo = regQ:
boo = o.disconnect

If boo = True Then
  MsgBox "Disconnected OK"
Else
  MsgBox "Not Disconnected"
End If

End Sub

AW Operations

mooAWAttach

mooAWAttach("[aw name]", "[position]")

Attaches an Analytic Workspace in the specified position if it exists



myObjectiveOLAP Version 2.9.8

85 / 205

Syntax

mooAWAttach("[aw name]", "[position]")

where [aw name] is the fully referenced analytic workspace name
[position] is the position the referenced aw should be attached.

FIRST makes the aw you are attaching the current one.
LAST makes the aw you are attaching the last in the list excluding the express aw.
BEFORE puts the aw you are attaching before an aw which is already in the list. 
AFTER puts the aw you are attaching after an aw which is already in the list.

Return Value

BOOLEAN

Example

Public Sub mooAwAttach()
'Attach Analytic Workspaces

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

If boo = True Then
 boo = o.mooAwAttach("GLOBAL.GLOBAL", "FIRST")
 boo = o.mooAwAttach("GLOBAL.GLOBAL", "AFTER EXPRESS")
Else
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

mooAWAttached

mooAWAttached(“ [aw name] “)

Returns TRUE if the specified analytic workspace is attached (open)

Syntax

mooAWAttached("[aw name]")

Return Value

BOOLEAN

Example

Public Sub mooAwAttached()
'Check if an Aw is attached



myObjectiveOLAP Version 2.9.8

86 / 205

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

boo = o.mooAwAttached("EXPRESS")
If boo = False Then
   MsgBox "No Not Attached"
Else
    MsgBox "Yes Attached"
End If

End Sub

mooAWDetach

mooAWDetach(“ [aw name] “)

Detaches an analytic workspace. MooAWDetach does not perform an update.

Syntax

mooawdetach("[aw name]")

Return Value

BOOLEAN

Example

Public Sub mooAwDetach()
'Detach Analytic Workspaces

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

If boo = True Then
 boo = o.mooAWDetach("GLOBAL.GLOBAL ")
Else
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Oracle OLAP Executing Commands

mooexecute

mooExecute(“ [OLAP DML] “)



myObjectiveOLAP Version 2.9.8

87 / 205

An API that allows a client developer to execute Oracle OLAP DML statements directly within the Oracle
OLAP environment and return any output from the Oracle OLAP engine

Syntax

mooexecute(“ [OLAP DML] “)

Return Value

STRING

Example

Sub mexecute()
'Example of MOOEXECUTE

On Error GoTo ErrorH

  Set moo = Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object

  Debug.Print moo.mooexecute("shw tod")
  
  Exit Sub

ErrorH:

Debug.Print Error(Err)

End Sub

wrap_runNonQ

wrap_runNonQ (“ [OLAP DML] “)

A low level API that allows a client developer to execute Oracle OLAP DML statements directly within the
Oracle OLAP environment.   wrap_runNonQ does not request any output from the Oracle OLAP environment
on execution.

Because no output is requested wrap_runNonQ is often used in time sensitive operations when no output is
expected as its execution time is approximately half that of calling mooExecute.

Syntax

wrap_runnonq(“ [OLAP DML] “)

Return Value

BOOLEAN

Example

Public Sub wrap_runNonQ()
'Example of wrap_runNonQ and wrap_GetDML

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected



myObjectiveOLAP Version 2.9.8

88 / 205

   Else
   boo = True
End If

If boo = True Then
 boo = o.wrap_runNonQ("shw tod")
   If boo = True Then
     'You Could also use .mooGetDML here
      Debug.Print (o.wrap_getDML) 
   Else
      Debug.Print o.getlastmooerr
   End If
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

wrap_GetDML

wrap_GetDML

A low level API that retrieves the output from the Oracle OLAP environment after  execution of a DML
statement via the wrap_runNonQ function.

Because no output is requested wrap_GetDMML is often used in conjunction with wrap_runNonQ but only
called when an error condition is detected within the Visual Basic for Applications client module.

Syntax

wrap_getdml

Return Value

STRING

Example

Public Sub wrap_runNonQ()
'Example of wrap_runNonQ and wrap_GetDML

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

If boo = True Then
   boo = o.wrap_runNonQ("shw tod")
   If boo = True Then
      Debug.Print (o.wrap_getDML)
   Else
   Debug.Print o.getLastMooErr
   End If
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr



myObjectiveOLAP Version 2.9.8

89 / 205

End If

End Sub

Functions

mooAllStat

mooAllStat

Opens the status of all dimensions within the currently attached Analytic Workspace. 

Syntax

mooAllStat

Return Value

BOOLEAN

Example

Public Sub mooAllstat()
'Limits all dimensions in the current AW to all

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
   boo = o.mooAwAttach("EXPRESS", "FIRST")
   boo = o.wrap_runNonQ("lmt INTL.MLANG to 1")
   Debug.Print o.mooStatlen("INTL.MLANG")
   boo = o.mooAllstat
   Debug.Print o.mooStatlen("INTL.MLANG")
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

mooAnalyzeCube

mooAnalyzeCube("[cube name]")

Returns a one-dimension array object each value of the array is a string value of the dimensions of the
specified Analytic Workspace cube.

Syntax

mooAnalyzeCube("[cube name]")

Return Value



myObjectiveOLAP Version 2.9.8

90 / 205

STRING() ARRAY

Example 

Public Sub AnalyzeCube()
'returns a single dimension array of all dimensions of the variable passed to
mooAnalyzeCube

Dim str() As String

'Check Im connected if not connect
If Not   .connected Then
   boo = Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule")
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.Object
.connect
   boo = 
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.connected
   Else
   boo = True
End If

str = 
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.mooAnalyzeC
ube("GLOBAL.GLOBAL!UNITS_CUBE_COST")

For i = 0 To UBound(str)
  Debug.Print (str(i))
Next

End Sub

Return Value Example

TIME
CHANNEL
CUSTOMER
PRODUCT

mooClearAnalyzeCube

mooClearAnalyzeCube

Clears the internal myObjectiveOLAP array storing the result of any mooAnalyzeCube call.  This destroys
the internal array and release memory.

Syntax

mooClearAnalyzeCube

Return Value

BOOLEAN

Example

Public Sub ClearAnalyzeCube()
'returns a single dimension array of all dimensions of the variable passed to
mooAnalyzeCube

Dim str() As String
Dim boo as Boolean



myObjectiveOLAP Version 2.9.8

91 / 205

'Check Im connected if not connect
If Not   
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.connected
Then
   boo = 
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.connect
   boo = 
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.connected
   Else
   boo = True
End If

str = 
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object
.mooAnalyzeCube("GLOBAL.GLOBAL!UNITS_CUBE_COST")

For i = 0 To UBound(str)
  Debug.Print (str(i))
Next

boo = 
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.mooClearAna
lyzeCube

if boo then
   debug.print("Clear of internal array complete")
End If

End Sub

Return Value Example

TIME
CHANNEL
CUSTOMER
PRODUCT
Clear of internal array complete

mooFreePages

mooFreePages

Reports the FREEPAGES of the current analytic workspace.  If no analytic workspace is attached zero will
be returned.

Syntax

mooFreePages() 

Return Value

STRING

Example

Public Sub mooFreePages()
'Shows the freepages of the current AW

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If



myObjectiveOLAP Version 2.9.8

92 / 205

'Connected so execute
If boo = True Then
    boo = o.mooAwAttach("EXPRESS", "FIRST")
    Debug.Print o.mooFreePages()
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

mooHost

mooHost()

Returns the hostname of the server which the Oracle OLAP environment is hosted.

Syntax

mooHost()

Return Value

STRING

Example

Public Sub mooHost()
'Shows the hostname of the server which you are connect to

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    Debug.Print o.mooHost()
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

mooInstance

mooInstance()

Returns the instance name of the Oracle OLAP  environment.

Syntax

mooInstance()

Return Value

STRING



myObjectiveOLAP Version 2.9.8

93 / 205

Example

Public Sub mooInstance()
'Shows the SID of the Oracle database you are connect to

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
     Debug.Print o.mooInstance()
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

mooSeconds

mooSeconds()

Returns the value of Seconds from the Oracle OLAP environment.

Syntax

mooseconds()

Return Value

LONG

Example

Public Sub mooSeconds()

'Return the current value of seconds within Oracle OLAP
Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Get the value of seconds
If boo = True Then
  Debug.Print (o.mooSeconds)
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub



myObjectiveOLAP Version 2.9.8

94 / 205

mooSysTimeStamp

mooSysTimeStamp()

Returns the value of SysTimeStamp within the  Oracle OLAP environment.

Syntax

mooSysTimeStamp

Return Value

STRING

Example

Public Sub mooSysTimeStampANDmooSysDate()
'Shows the value of SysTimeStamp and sysDate

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
     Debug.Print o.mooSysTimeStamp()  
     'returns i.e. 11-MAY-10 17.58.17.851963 +01:00
     Debug.Print o.mooSysDate()       
     'returns i.e. 11-MAY-10
     
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

mooUser

mooUser()

Returns the name of the user currently connected to Oracle OLAP.

Syntax

mooUser()

Return Value

STRING

Example

Public Sub mooUser()
'Shows the current database user



myObjectiveOLAP Version 2.9.8

95 / 205

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
     Debug.Print o.mooUser()
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

olapQDR

olapQDR(“ [valid QDR statement] “)

An end user orientated function that can be used to return a value from an Oracle OLAP array by fully
qualifying the coordinates within the array.

Syntax

olapqdr("[valid QDR statement]")

Where QDR statements in the the form
cube(dim1 dimval1 dim2 dimval2 ….dimx dimvalx)
The QDR must be fully referenced for the stated cube otherwise an error will be returned.

Return Value

STRING

Example

Public Sub olapQDR()
'Pass a QDR to Oracle OLAP and return the result

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so bring up the command line
If boo = True Then
   boo = o.mooAwAttach("EXPRESS", "FIRST")
     'INTL.MLANGMAP is a variable within the Express AW

  'You can pass any valid OLAP qdr to olapqdr
          Debug.Print (o.olapQDR("INTL.MLANGMAP(INTL.MLANG 'ENB')"))
End If

End Sub



myObjectiveOLAP Version 2.9.8

96 / 205

mooSysDate

mooSysDate()

Returns the value of SysDate within the Oracle OLAP environment.

Syntax

mooSysDate()

Return Value

STRING

Example

Public Sub mooSysTimeStampANDmooSysDate()
'Shows the value of SysTimeStamp and sysDate

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
     Debug.Print o.mooSysTimeStamp()  
     'returns ie. 11-MAY-10 17.58.17.851963 +01:00
     Debug.Print o.mooSysDate()       
     'returns ie. 11-MAY-10
     
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

mooGetDimList

mooGetDimList ([Dimension Name], True/False)

The mooGetDimList function returns a one dimensional array containing dimension values from a dimension
within Oracle OLAP.  

The contents of the array passed back can then either be further processed in VBA or passed directly to a
worksheet within Excel for reporting.
 
mooGetDimList observes the current status of the dimension passed to the function if the second boolean
argument is either omitted or FALSE is passed.  

If TRUE is passed as the second functional argument then mooGetDimList will temporarily open the
dimension to all values by issuing a LIMIT [DIMENSION_NAME] to all statement before retrieving the list of
dimension values. mooGetDimList will encapsulate the LIMIT ALL and dimension retrieval within a PUSH
and POP statement ensuring the current dimensional limit is unaffected by the users request.

If the status of the dimension being requested is null then NA will be returned to VBA.



myObjectiveOLAP Version 2.9.8

97 / 205

If the dimension does not exist or mooGetDimList detects that it is not connected to an Oracle OLAP
enabled database then the 0 element of the array will contain any error information.

Syntax

   mooGetDimList ([Dimension Name], True / False)

Return Value

STRING ()

Example

Sub listDimensions()

  Dim d As Double 'Might be a long dimension
  Dim arr() As String

  Set moo =
Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object

  arr = moo.mooGetDimList("ACCOUNT", True)

  For d = 0 To UBound(arr)
   Debug.Print (arr(d))
  Next

End Sub

Error Handling

getLastMooErr

getLastMooErr()

Returns the text of any error trapped by the myObjectiveOLAP library.  This includes errors that were not
handed over to the Oracle OLAP environment as the API determined the construct was invalid.

Syntax

getLastMooError()

Return Value

STRING

Example

Public Sub mooClearErr()
'Get Last Recorded Error

If Not oregistered Then:   boo = regQ:
   Debug.Print o.getlastmooerr   'Show the last Error
   Debug.Print o.mooClearErr     'Clear all error messages
   Debug.Print o.getlastmooerr   'show that all error messages have been
cleared
End Sub

mooClearErr



myObjectiveOLAP Version 2.9.8

98 / 205

mooClearErr

Clears the last error trapped by the myObjectiveOLAP library.  Subsequent calls to getLastMooErr would
result in a NULL being returned until the next error.

Syntax

mooClearErr()

Return Value

BOOLEAN

Example

Public Sub mooClearErr()
  'Clear Errors

  If Not oregistered Then:   boo = regQ:
  Debug.Print o.getlastmooerr   'Show the last Error
  Debug.Print o.mooClearErr     'Clear all error messages
  Debug.Print o.getlastmooerr   'show that all error messages have been
cleared

End Sub

mooServErr

mooServErr()

Returns the text of any error trapped by the Oracle OLAP environment.

Syntax

mooServErr()

Return Value

STRING

Example

Public Sub mooServErr()

'Get the last Oracle OLAP error

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
   boo = o.wrap_runNonQ("shw GenerateAnError")
     Debug.Print o.mooServErr()
    Else
   'Something went wrong print any error information



myObjectiveOLAP Version 2.9.8

99 / 205

   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Working with objects

mooDimLen

mooDimLen("[dim1"])

Returns the maximum length of an Oracle OLAP dimension as supplied to the function.

The result is the same as executing an obj(dimmax 'DIMNAME') within the Oracle OLAP environment.

Syntax

mooDimLen("[dim1]")

Return Value

INTEGER

Example

Public Sub mooDimLen()

'Show the Total Number of Dimension Values of a given dimension
Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

If boo = True Then
 Debug.Print o.moodimlen("INTL.MLANG")
Else
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

mooExists

mooExists("[object name]")

Enables the developer to identify if a given object exists within an Analytic Workspace in the current Oracle
OLAP session

Syntax

mooExists("[object name]")

Return Value



myObjectiveOLAP Version 2.9.8

100 / 205

STRING

Example

Public Sub mooExists()

If Not oregistered Then:   boo = regQ:
boo = o.mooExists("ALLCOMPILE")

If boo = True Then
  MsgBox "Yes, ALLCOMPILE Exists"
Else
  MsgBox "No, ALLCOMPILE Does Not Exist"
  Debug.Print o.getlastmooerr
End If

End Sub
 

mooObjType

mooObjType("[object name]")

Enables the developer to identify the data type of an Oracle OLAP object

Syntax

mooObjType("[object name]")

Return Value

STRING

Example

Public Sub mooObjType()

If Not oregistered Then:   boo = regQ:

If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

If boo = True Then
   Debug.Print o.mooObjType("ALLCOMPILE")
   Debug.Print o.mooObjType("INTL.MLANGMAP")
End If 

mooOpenDim

mooOpenDim("[dim1 ]"

Limits a specified dimension within the Oracle OLAP environment to a status of ALL.

Syntax

mooOpenDim("[dim1 ]")

Return Value

BOOLEAN



myObjectiveOLAP Version 2.9.8

101 / 205

Example

Public Sub mooOpenDim()
'Limits a specified dimension to all

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
   boo = o.mooAwAttach("EXPRESS", "FIRST")
   boo = o.wrap_runNonQ("lmt INTL.MLANG to 1")
   Debug.Print o.mooStatlen("INTL.MLANG")
   boo = o.mooOpenDim("INTL.MLANG")
   Debug.Print o.mooStatlen("INTL.MLANG")
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

mooPushDims

mooPushDims("[object name]")

Executes a PUSH of an Oracle OLAP Dimension if the dimension exists.

Syntax

mooPushDims("[object name]")

Return Value

BOOLEAN

Example

Public Sub mooPushMooPopExample()
'Example Using mooPush mooPop and mooStatlen

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
   boo = o.mooAwAttach("EXPRESS", "FIRST")
   'show the current length of the INTL.MLANG dimension



myObjectiveOLAP Version 2.9.8

102 / 205

   Debug.Print o.mooStatlen("INTL.MLANG")
   'push the dimension
   boo = o.mooPushDims("INTL.MLANG")
   'limit INTL.MLANG dimension to 1 value                    
   boo = o.wrap_runNonQ("lmt INTL.MLANG to 1")            
   'show the current length of the INTL.MLANG dimension    
   Debug.Print o.mooStatlen("INTL.MLANG")                  
   'pop the dimension
   boo = o.mooPopDims("INTL.MLANG")                        
   Debug.Print o.mooStatlen("INTL.MLANG")
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

mooPopDims

mooPopDims("[object name]")

Executes a POP of an Oracle OLAP Dimension if the dimension exists.

Syntax 

mooPopDims("[object name]")

Return Value

BOOLEAN

Example

Public Sub mooPushMooPopExample()
'Example Using mooPush mooPop and mooStatlen

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
   boo = o.mooAwAttach("EXPRESS", "FIRST")
   'show the current length of the INTL.MLANG dimension
   Debug.Print o.mooStatlen("INTL.MLANG")
   'push the dimension
   boo = o.mooPushDims("INTL.MLANG")
   'limit INTL.MLANG dimension to 1 value                    
   boo = o.wrap_runNonQ("lmt INTL.MLANG to 1")            
   'show the current length of the INTL.MLANG dimension    
   Debug.Print o.mooStatlen("INTL.MLANG")                  
   'pop the dimension
   boo = o.mooPopDims("INTL.MLANG")                        
   Debug.Print o.mooStatlen("INTL.MLANG")
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If



myObjectiveOLAP Version 2.9.8

103 / 205

End Sub

mooStatlen

mooStatlen("[dim1"])

Returns the current length of a specified dimension if the dimension exists within the current Oracle OLAP
session.

Syntax

mooStatlen("[dim1]")

Return Value

LONG

Example

Public Sub mooPushMooPopExample()

'Example Using mooPush mooPop and mooStatlen

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
   boo = o.mooAwAttach("EXPRESS", "FIRST")
   'show the current length of the INTL.MLANG dimension
   Debug.Print o.mooStatlen("INTL.MLANG")
   'push the dimension
   boo = o.mooPushDims("INTL.MLANG")
   'limit INTL.MLANG dimension to 1 value                    
   boo = o.wrap_runNonQ("lmt INTL.MLANG to 1")            
   'show the current length of the INTL.MLANG dimension    
   Debug.Print o.mooStatlen("INTL.MLANG")                  
   'pop the dimension
   boo = o.mooPopDims("INTL.MLANG")                        
   Debug.Print o.mooStatlen("INTL.MLANG")
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Local library functions

mooEncrypt

mooEncrypt("[PASSWORD]")

Accepts a string and returns an encrypted version of the string that can be used in constructing a valid XML
connection file.

The mooEncrypt function can be used to generate a password that can be copied and pasted into an XML



myObjectiveOLAP Version 2.9.8

104 / 205

connection file. 

Note there is no decrypt equivalent function as it is anticipated that all Oracle account passwords could be
reset by the local DBA.  

Syntax

mooencrypt("[password]")

Return Value

STRING

Example

Public Sub mooEncrypt()

'Generate an encrypted password for a connection xml file
'The Output in the VBA immediate window can be pasted in to a connection file
If Not oregistered Then:   boo = regQ:
Debug.Print o.mooEncrypt("myPasswordHere")

End Sub

mooSetLang

mooSetLang("[EN|FR]")

Sets the language that any internal messages that are generated by the moo library or menu items used by
the graphical user interface.  Default is EN.

Syntax

mooSetLang("[EN|FR]")

Return Value

BOOLEAN

Example

Public Sub mooSetLang()

If Not oregistered Then:   boo = regQ:

'Switch the text in the graphical forms to French
o.mooSetLang ("FR")
o.mooShowConnFrm

'Switch back to English
o.mooSetLang ("EN")
o.mooShowConnFrm

End Sub

loadSavedScript

loadSavedScript()

The loadSavedScript file acts as VBA available API to the Read OLAP Script myObjectiveOLAP
functionality. 



myObjectiveOLAP Version 2.9.8

105 / 205

The API opens a standard Windows file system dialog box enabling the end-user to select a saved text file
containing one or more valid OLAP DML statements.  The contents of the file are immediately executed
when selection of the file is complete.

loadSavedScript returns the directory path and filename of the file being opened.

Notes

All text files should be saved with a ".moo" file extension.

An example of the loadSavedScript function is seen in the 2012-myObjectiveOLAP-FastExample example
Excel workbook.

Syntax

loadSavedScript()

Return Value

STRING

Example

Private Sub openSavedBTN_Click()

On Error GoTo EH

Set moo = Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object

debug.print moo.loadSavedScript

Exit Sub

EH:
 MsgBox Err & ": " & Error(Err)
End Sub

loadSavedScriptFile

loadSavedScriptFile("filename", [TRUE][FALSE])

The loadSavedScript file acts as VBA available API to the Read OLAP Script myObjectiveOLAP
functionality. 

The API expects a valid directory and file string argument to be passed.  The contents of the file are
immediately executed when selection of the file is complete.

loadSavedScript returns the directory path and filename of the file being opened.  If the file the calling
application is attempting to open does not exist or can not opened due to other considerations (permissions
etc.) the output from the loadSavedScriptFile function will be: "ERR: No File specified"

The second boolean argument determines if a .moo.out file recording OLAP IO is produced in the same
directory as the source file.

Notes

All text files should be saved with a ".moo" file extension.

An example of the loadSavedScript function is seen in the 2012-myObjectiveOLAP-FastExample example
Excel workbook.



myObjectiveOLAP Version 2.9.8

106 / 205

Syntax

loadSavedScriptFile("filename", [TRUE][FALSE])

Return Value

STRING

Example

Private Sub openSavedBTN_Click()

On Error GoTo EH

Set moo = Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object

debug.print moo.loadSavedScript("c:\myfile.moo", TRUE)

Exit Sub

EH:
 MsgBox Err & ": " & Error(Err)
End Sub

moo Fast Reporting

Fast Reporting Functions

myObjectiveOLAP contains a number of functions which can enable large amounts of information to be
transferred from your Oracle OLAP Database server to the client in a network efficient manner.

Three functions are provided:

· mooFR
Returns a two dimensional array from a variable in Oracle OLAP

· mooFRDescDown
Returns a one dimensional array on the Y axis from Oracle OLAP

· mooFRDescAcross
Returns a one dimensional array on the X axis from Oracle OLAP

 
An example reporting GUI application is available for download which utilises many of the functions of the
myObjectiveOLAP API and includes use of the Fast reporting functions.  This is available from the 
myObjectiveOLAP Downloads page.

 Warning
In the available example the use of the Fast Reporting functions are included in a subroutine not a function,
this is intentional.  
You can not return an array from an external application to a VBA array within a function, instead you must
use a subroutine.  Error trapping and control can still be accomplished by the use of Public or Global
variables.  

mooFR

mooFR ([DOWN_DIM], [ACROSS_DIM], [OLAP VARIABLE])

The mooFR function returns a two dimensional array from a variable in Oracle OLAP.  The contents of the
array (table) passed back can then either be further processed in VBA or passed directly to a worksheet
within Excel for reporting.

http://myobjectiveolap.com/downloads.html


myObjectiveOLAP Version 2.9.8

107 / 205

 
To ensure valid data is returned by this function it is the responsibility of the calling application to ensure
that only the DOWN and ACROSS dimensions have one or more values in status.
 
If you are using mooFR against a variable with more than two dimensions you should limit the paging
dimensions to only one value each.
 
mooFR can not be used against one dimensional variables, however mooFRDescDown or
mooFRDescAcross can be used in these circumstances, even for numeric data.
 
mooFR observes the current status of the DOWN and ACROSS dimensions within the Oracle OLAP
database and it is the responsibility of the calling application or user to set these appropriately.

Syntax

   mooFR ([DOWN_DIM], [ACROSS_DIM], [OLAP VARIABLE])

Return Value

STRING

Example

array = (o.mooFR("CUSTOMER", "TIME", "UNITS_CUBE_COST")

mooFRDescDown

mooFRDescDown ([DIMENSION], [OLAP VARIABLE])

The mooFRDescDown function returns a one dimensional array on the Y axis from Oracle OLAP.  The
contents of the array (table) passed back can then either be further processed in VBA or passed directly to
a worksheet within Excel for reporting.
 
mooFRDescDown is primarily used to return either row or column descriptive data, however, it can be used
to return any one dimensional array back to the calling desktop application.
 
mooFRDescDOWN observes the current status of the DOWN dimension within the Oracle OLAP database
and it is the responsibility of the calling application or user to set these appropriately.
 
mooFRDescDown should only be used against one dimensional variables

Syntax

   mooFRDescDown ([DIMENSION], [OLAP VARIABLE])

Return Value

STRING

Example

array = (o.mooFRDescDown("CUSTOMER", "CUSTOMER.DESC")

mooFRDescAcross

mooFRDescAcross ([DIMENSION], [OLAP VARIABLE])



myObjectiveOLAP Version 2.9.8

108 / 205

The mooFRDescAcross function returns a one dimensional array on the X axis from Oracle OLAP.  The
contents of the array (table) passed back can then either be further processed in VBA or passed directly to
a worksheet within Excel for reporting.
 
mooFRDescAcross is primarily used to return either row or column descriptive data, however, it can be used
to return any one dimensional array back to the calling desktop application.
 
mooFRDescAcross observes the current status of the Across dimension within the Oracle OLAP database
and it is the responsibility of the calling application or user to set these appropriately.
 
mooFRDescAcross should only be used against one dimensional variables

Syntax

   mooFRDescAcross ([DIMENSION], [OLAP VARIABLE])

Return Value

STRING

Example

array = (o.mooFRDescAcross("TIME", "TIME.DESC")

Example Application

Example application.

An example reporting GUI application is available for download. It utilises many of the functions of the
myObjectiveOLAP API and includes use of the Fast reporting functions.  This is available from the 
myObjectiveOLAP Downloads page.
 
The VBA application can be used against any native 10g or 11g Oracle OLAP standard Analytic Workspace
without any change to the VBA, and can be used against non-standard Analytic Workspaces with little
change to the VBA.

Using the example application

In order to use the example application you should connect to your Oracle OLAP environment using the
connection method appropriate for your server installation.

You should then ensure you have the necessary Analytic Workspace attached by your database session,
this can be accomplished through the Analytic Workspace Selector

The application is designed as an example and can be easily customised for your specific installation
requirement.

Hint
All of the screen-shots shown below use the Oracle provided GLOBAL example Analytic Workspace which
can be downloaded from the Oracle website. 

Main Window

When you start the example myObjectiveOLAP application the following New Report screen is displayed.

http://myobjectiveolap.com/downloads.html


myObjectiveOLAP Version 2.9.8

109 / 205

The following Main Tabs allow the user to:

Tab Purpose

New Report Define a new report, choose dimensional orientation, set limits, apply formatting, save
the report, run the report

Existing Report Apply an existing report, run an existing report, run all existing reports, delete existing
reports

Advanced Display the hidden worksheet which holds meta-data in relation to existing reports.

Table: myObjectiveOLAPHelp-2012-moo Fast Reporting-Example Application:1.0

New Report tab

When you want to create a new report you should select the measure you want to report on from the
Measure drop-down list, choosing a measure will populate the Available Dimensions list.  You can then drag
your dimensions to the Down Dimension and Across Dimension layout area.

Limits tab

After selecting the Measure and orientation of your new report you should move over to the Limits tab.  In
the limits window you can type free form OLAP limit statements.  Once you have entered your limit
statement you should press the Apply Limits button.  Any errors in your limit statement will be displayed in
the window below.  Alternatively you could choose a pre-saved text file with valid OLAP limit statements in
it.  To select a pre-saved file press the Apply a Saved Limit button, this will enable you to browse local file-
systems available to you for a valid file.  Pressing Open on a selected file will Apply the limits and any errors
will be reported to you.



myObjectiveOLAP Version 2.9.8

110 / 205

Status tab

After applying your limits you can check the Status of your selected Measure by navigating to the Status
tab.

Run or Save Report tab

After you are satisfied with your new report's orientation and applied limits you should select the Run or
Save Report tab.

This tab enables you to select the destination Excel worksheet of your report, the starting position of your
data, and a number of formatting options.  You can then Run your report or choose to Save it.



myObjectiveOLAP Version 2.9.8

111 / 205

The following table gives you an overview of the fields available in the Run or Save Report tab.

Field / Option Purpose

Worksheet Name This determines the destination Microsoft Excel worksheet for your report.  This does
not have to pre-exist.

Starting Cell This is the cell of the first field of data from your measure.  In most cases you will
have dimensional descriptions in the X and Y axis on your report, so should choose
cell B2 at a minimum.

Format Options
Drop-down

Enables you to select the numerical cell format applied to your data.  This only
affects data retrieved from your measure and does not apply to your dimensional
descriptions.

Suppress NA Rows Adds an additional limit statement to keep only non-NA rows before running your
report.

Suppress NA and
Zero Rows

Adds an additional limit statement to keep only non-NA and non-zero rows before
running your report

Suppress NA
Columns

Adds an additional limit statement to keep only non-NA columns before running your
report.

Suppress NA and
Zero Columns

Adds an additional limit statement to keep only non-NA and non-zero columns before
running your report

Clear all data from
worksheet

This wipes the destination worksheet before publishing your report into it.  This is
useful if you have the row and column suppression switched on, as the scale of your
report could significantly grow and shrink.

Table my Data
Drown Down and
Tick

This is only seen if the VBA behind the example application identifies that the Excel
version is greater than or equal to Microsoft Excel 2010.  If the "Table my data" box is
selected then the selected Table Style from the drop down box will be applied to your
published report.

Report Name This is the name that refers to this specific orientation, limit, and formatting definition.
 Multiple reports could exist on a single 

Table: myObjectiveOLAPHelp-2012-moo Fast Reporting-Example Application:2.0



myObjectiveOLAP Version 2.9.8

112 / 205

Existing Report tab

You can select and run pre-saved reports from the Existing Report tab.  Select the report you want to run or
review and then select your desired option.  

Option Action

Apply Apply settings of selected report and navigate me to the Run or Save Report tab

Apply & Run Apply settings of selected report and run selected report.

Run All Reports Run all reports available in this workbook.

Delete Report Delete the selected report.

Table: myObjectiveOLAPHelp-2012-moo Fast Reporting-Example Application:3.0

Advanced tab

The advanced tab enables you to unhide the hidden Excel worksheet which stores the meta-data definitions
of your saved reports.

The example report uses a mixture of cell-contents and comment fields to store information relating to your
saved report.   The meta-data definitions are documented in the below table  (myObjectiveOLAPHelp-2012-
moo Fast Reporting-Example Application:4.0) and stored in a worksheet called mooFRStore.  Each column
holds the definition of one saved report.

Field Data
Type

Purpose

Row 1 STRIN
G

Report name

Row 2 BOOL
EAN

External Saved file.  This will be TRUE if your limit statement is saved in an external
text file, otherwise it will be FALSE

Row 3 STRIN If your limit file is saved in an external text file this field will hold the directory location



myObjectiveOLAP Version 2.9.8

113 / 205

G and filename.

Row 4 STRIN
G

If your limit does not use an external file, but limit statements entered into the Limits
tab your limit statements will be saved here.

Row 5 STRIN
G

Worksheet name.  The name of the worksheet which acts as a container for your
report.

Row 6 STRIN
G

Start Cell.   The cell the data element of your report should start in.

Row 7 STRIN
G

Down Dimension.  The dimension whose orientation you have selected for the X axis of
your report.

Row 8 STRIN
G

Across Dimension.  The dimension whose orientation you have selected for the Y axis
of your report.

Row 9 STRIN
G

Measure.  The measure selected.

Row 10 BOOL
EAN

Suppress NA rows. 

Row 11 BOOL
EAN

Suppress NA and Zero rows

Row 12 STRIN
G

The selected cell formatting for the data element of your saved report.

Row 13 BOOL
EAN

Suppress NA columns. 

Row 14 BOOL
EAN

Suppress NA and Zero columns

Row 15 BOOL
EAN

Clear Worksheet before publishing new report

Row 16 BOOL
EAN

Table my data, If you are using Excel 2010 or greater and this is set to TRUE then the
example application will apply the Table Style as specified in Row 17.

Row 17 STRIN
G

Table Style.  If you are using Excel 2010 or greater and you have selected Table My
Data then the Table Style will be saved in this field.

myObjectiveOLAPHelp-2012-moo Fast Reporting-Example Application:4.0

Setting OLAP Options

Common Options

The following functions can be used to set Oracle OLAP Server side options.  

They are protected functions which use the myObjectiveOLAP sense-checking algorithm before being
executed within the Oracle OLAP environment.  Any errors are reported via:  getLastMooErr

Documentation on the use of these options can be found in the “Oracle OLAP DML Reference Guide”  

mooSetAwWaitTime

mooSetAwWaitTime(“ [integer value] ”)

Sets the Oracle OLAP AWWAITIME option

Syntax

mooSetAwWaitTime("[integer value]")

Where the [integer value] is the number of seconds required. 
If zero is entered the value will be set to the default of 20. 



myObjectiveOLAP Version 2.9.8

114 / 205

Return Value

BOOLEAN
Example

Public Sub mooSetAWWaitTime()

'Sets the AWWaitTime Option in Oracle OLAP
'If 0 is passed then the default 20 is applied

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetAWWaitTime("0")  ' seconds passed here
    boo = o.wrap_runNonQ("show AWWaitTime"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

Return Value Example

20

mooSetBadLine

mooSetBadLine("[yes|no]")

Sets the Oracle OLAP BADLINE option

Syntax

mooSetBadline("[yes|no]")

Return Value

BOOLEAN
Example

Public Sub mooSetBadLine()

'Sets the Badline Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If



myObjectiveOLAP Version 2.9.8

115 / 205

'Connected so execute
If boo = True Then
    boo = o.mooSetBadLine("YES")
    boo = o.wrap_runNonQ("show BadLine"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

Return Value Example

yes

mooSetCommas

mooSetCommas(“ [yes|no] ”)

Sets the Oracle OLAP COMMAS option

Syntax

mooSetCommas("[yes|no]")

Return Value

BOOLEAN

Example

Public Sub mooSetCommas()

'Sets the COMMAS Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetCommas("NO")  ' YES or NO
    boo = o.wrap_runNonQ("show Commas"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

Return Value Example

no

mooSetDateFormat

mooSetDateFormat("[valid date format]")



myObjectiveOLAP Version 2.9.8

116 / 205

Sets the Oracle OLAP DATEFORMAT option

Syntax

mooSetDateFormat("[valid date format]")

Return Value

BOOLEAN

Example

Public Sub mooSetDateFormat()

'Sets the DateFormat Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetDateFormat("<DD><MTXT><YY>")  ' Format should be
<DD><MTXT><YY>
    boo = o.wrap_runNonQ("show DateFormat"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Return Value Example

<DD><MTXT><YY>

mooSetDecimals

mooSetDecimals(“ [integer value] “)

Sets the Oracle OLAP DECIMALS option.

Syntax

mooSetDecimals("[integer value]")

Where the [integer value] represents the number of decimals places required

Return Value

BOOLEAN
Example

Public Sub mooSetDecimals()

'Sets the Decimals Option in Oracle OLAP



myObjectiveOLAP Version 2.9.8

117 / 205

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetDecimals("0")
    boo = o.wrap_runNonQ("show DECIMALS"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Return Value Example

0

mooSetLikeCase

mooSetLikeCase(“ [yes|no] “)

Sets the Oracle OLAP LIKECASE option.

Syntax

mooSetLikeCase("[yes|no]")

Return Value

BOOLEAN
Example

Public Sub mooSetLikeCase()
'Sets the likecase Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetLikeCase("NO")
    boo = o.wrap_runNonQ("show LIKECASE"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If



myObjectiveOLAP Version 2.9.8

118 / 205

End Sub

Return Value Example

no

mooSetNASpell

mooSetNASpell

Sets the Oracle OLAP NASPELL option

Syntax

mooSetNaSpell("[text|NA]")

Return Value

BOOLEAN

Example

Public Sub mooSetNASpell()

'Sets the NASpell Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetNASpell("0")
    boo = o.wrap_runNonQ("show na"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

Return Value Example

0

mooSetNASkip

mooSetNASkip("[yes|no]")

Sets the Oracle OLAP NASKIP option

Syntax

mooSetNASkip("[yes|no]")

Return Value



myObjectiveOLAP Version 2.9.8

119 / 205

BOOLEAN

Example 

Public Sub mooSetNASkip()

'Sets the NASpell Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetNASkip("YES")
    boo = o.wrap_runNonQ("show NASKIP"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Return Value Example

yes

mooSetNASkip2

mooSetNASkip2("[yes|no]")

Sets the Oracle OLAP NASKIP2 option

Syntax

moosetnaskip2("[yes|no]")

Return Value

BOOLEAN
Example

Public Sub mooSetNASkip2()

'Sets the NASpell Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True



myObjectiveOLAP Version 2.9.8

120 / 205

End If

'Connected so execute
If boo = True Then
    boo = o.mooSetNASkip2("NO")
    boo = o.wrap_runNonQ("show NASKIP2"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Return Value Example

no

mooSetParens

mooSetParens(“ [yes|no]“)

Sets the Oracle OLAP PARENS option.

Syntax

mooSetParens("[yes|no]")

Return Value

BOOLEAN
Example

Public Sub mooSetParens()
'Sets the parens Option in Oracle OLAP

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not   o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so execute
If boo = True Then
    boo = o.mooSetParens("no")
    boo = o.wrap_runNonQ("show PARENS"): Debug.Print (o.mooGetDML)
    Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

Return Value Example

no

Standard OLAP Graphical API

Standard OLAP Graphical API



myObjectiveOLAP Version 2.9.8

121 / 205

The following functions can be called via the Microsoft Excel VBA model to display myObjectiveOLAP
graphical components and forms.

CommandBar

commandBar

Displays a floating menu containing icons used to connect to or disconnect from a host, attach an analytic
workspace via the AW Manager, open the OLAP Console and the help system.

Syntax

commandBar

Return Value

BOOLEAN
Example

Public Sub mooCommandBar()
'show the myObjectiveOLAP command bar

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:
boo = o.commandBar

End Sub

GUI Displayed:

mooCmd_line

mooCmd_line

Displays a command line interface that can be used to interact directly with the Oracle OLAP environment
in a similar way to Oracle OLAP Worksheet or Oracle OX products.
The command line interface also offers access to MooScript which enables the developer to interact both
with internal myObjectiveOLAP structures and Oracle OLAP structures through an automation layer.

Syntax

mooCmd_line()

Example

Public Sub moo_CmdLine()
'Bring up the OLAP Console

Dim boo As Boolean



myObjectiveOLAP Version 2.9.8

122 / 205

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so bring up the command line
If boo = True Then
  boo = o.mooCmd_Line
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If

End Sub

GUI Displayed:

mooShowConnFrm

mooShowConnFrm

Displays the myObjectiveOLAP Connection Editor Screen, this is used in creating a valid
connection XML file for use with either the GUI connect or the connect function. 

Syntax

mooShowConnFrm

Return Value



myObjectiveOLAP Version 2.9.8

123 / 205

BOOLEAN

Example

Public Sub mooShowConnFrm()
'show the myObjectiveOLAP Connection Editor

    Application.COMAddIns.Item("myObjectiveOLAPXL.AddinModule").Object.mooShow
ConnFrm

End Sub

GUI Displayed:

ShowAvailAW

ShowAvailAW

Displays a Selector style graphical attach tool that can be used to attach or detach available analytic
workspaces.

Syntax

showAvailAW()

Return Value

BOOLEAN



myObjectiveOLAP Version 2.9.8

124 / 205

Example

Public Sub showAvailAW()
'Display the Analytic Workspace Selector

Dim boo As Boolean

If Not oregistered Then:   boo = regQ:

'Check Im connected if not connect
If Not o.connected Then
   boo = o.connect
   boo = o.connected
   Else
   boo = True
End If

'Connected so bring up the Analytic Workspace selector
If boo = True Then
  boo = o.showAvailAW
Else
   'Something went wrong print any error information
   Debug.Print "Unable to Connect"
   Debug.Print o.getlastmooerr
End If
End Sub

GUI Displayed:

myObjectiveOLAP Server



myObjectiveOLAP Version 2.9.8

125 / 205

myObjectiveOLAP Server Overview

An optional server component can be installed to be used with the myObjectiveOLAP client.

The myObjectiveOLAP Server component offers a framework for migration of legacy Express, OFA, and
OSA applications to Oracle OLAP 11g. 
In addition it can be used by green-field Oracle OLAP application installations, or existing Oracle OLAP
applications which would benefit from the following functionality.

Data Submission Excel templates using the myObjectiveOLAP client can submit data back to Oracle
OLAP, triggering post-load events such as aggregation, modeling or report
generation.   
Full auditing of data submission is easily reportable and the API also allows for
rollback of specific or all submissions. (1)

AW Data Loading Data can be loaded directly into the Analytic Workspace environment without having
to pass through the RDBMS layer. Data loads can be scripted and included as Local
Processes within the myObjectiveOLAP work-flow Process Manager.

Meta-data
management

Dimensional and structural maintenance can be scripted or manually maintained
directly within the Analytic Workspace engine, without having to pre-populate the
RDBMS layer.

User management myObjectiveOLAP Server, handles user creation and rights management specific to
an OLAP application.

Process
Management

A robust and fully auditable Process Manager executes either Standard or locally
defined processes.   

OLAP DML
Execution

Local processes can be created using the full Oracle OLAP DML programming
syntax to manipulate, load or export your data.  Many legacy applications can take
advantage of this with minimal changes to the core business process logic. 
Maximizing your ROI. 

Data Scoping Data can be fully scoped to enable or disable access to your business data.

Work Flow Business processes can be defined based on input actions.

Oracle OLAP
standard
computability

Once you have built your cubes and meta data, you can enable them for Oracle
OLAP standard compatibility for SQL client access, or access from other tools, such
as OBIEE, Oracle BI Spreadsheet Addin, or APEX.

Notes.

1) Clients who have previously defined templates for use with Oracle
Express or Oracle Financial Analyzer

using the "SDMC OFA Connect" software, can easily update their templates
for use with Oracle OLAP and

myObjectiveOLAP Server.

2) It is recommended that clients use Oracle OLAP 11.2.0.3 or greater. 



myObjectiveOLAP Version 2.9.8

126 / 205

Whilst the myObjectiveOLAP Server
components are certified for use on 11.2.0.2 and below, clients may

encounter issues with multiple level
based hierarchies when attempting to maintain them within AWM. This

issue has been resolved in 11.2.0.3 
of the Oracle database.

  

Architecture

Installing myObjectiveOLAP Server

The following diagram shows a high level overview of the myObjectiveOLAP Server architecture

Table: myObjectiveOLAPHelp-2012-moo Fast Reporting-Example Application:1.0

Installing

Installing myObjectiveOLAP Server

Requirements

Database software

Oracle Database 11g with OLAP option. 

Access

sqlPlus access as SYS (SYSDBA)

File system access on the same machine as sqlPlus.



myObjectiveOLAP Version 2.9.8

127 / 205

File system access which is visible to the Oracle RDBMS and which Read Write
Directory aliases can be defined.

Overview

Two sql scripts are provided to install a base myObjectiveOLAP Server install:

Script Purpose

mooSetupUser.
sql

Defines two RDBMS users: MOOUSER and MOOSERVER.  Grants the correct roles
and responsibilities to these users.

mooSetupEnviro
nment.sql

Defines the base myObjectiveOLAP Server Analytic Workspace environment and imports
the core structures from a series of supplied binary EIF files.

[myObjectiveOLAP-Server-Install-Table-1]

Getting Ready for Installation.

Before executing the following mooSetupUser.sql you should enable the OLAPSYS Oracle Database user:

If this is not a new Oracle OLAP installation, and you are adding to an existing environment then you may
not need to complete this step.

This can be done by logging into the database as SYS as shown below:

moo12$ $ORACLE_HOME/bin/sqlplus / as SYSDBA

SQL*Plus: Release 11.2.0.3.0 Production on Wed Feb 1 20:10:04 2012

Copyright (c) 1982, 2011, Oracle.  All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing
options

SQL>
SQL> GRANT CREATE SESSION       TO "OLAPSYS";
SQL> GRANT ALTER SYSTEM         TO "OLAPSYS";
SQL> commit; 
SQL> EXIT

mooSetupUser.sql Overview

Users

mooSetupUser.sql defines two Oracle Database users:

Username Purpose

MOOSERVER This is the account used by the myObjectiveOLAP application administrator as the
Oracle Database account, this is separate from the myObjectiveOLAP application user
of the same name, although both are often used in conjunction.  This user is assigned a
custom Oracle Database profile called MOOSERVER as discussed below.

This user is granted access to objects a normal user would not be able to access such
as some of the directory aliases shown below.

MOOUSER This is the primary Oracle Database account used as part of the connection by all
normal end-users.  This user is assigned a custom Oracle Database profile called



myObjectiveOLAP Version 2.9.8

128 / 205

MOOSERVER as discussed below.

[myObjectiveOLAP-Server-Install-Table-2]

Passwords

mooSetupUser.sql defines the passwords for the two Oracle Database users MOOSERVER and
MOOUSER.  You should change the password section of the script (RED) below before execution of the
installation script: 

Username Purpose

MOOSERVER  -- Change the password below
 -- This is the username you use in an application DBA user db connection screen
CREATE USER "MOOSERVER" PROFILE MOOSERVER

IDENTIFIED BY "myObjectiveOLAP4321"
ACCOUNT UNLOCK;

MOOUSER -- Change the password below
-- This is the username you use in a normal user db connection screen
CREATE USER "MOOUSER" PROFILE MOOSERVER

IDENTIFIED BY "myObjectiveOLAP4321"
ACCOUNT UNLOCK;

[myObjectiveOLAP-Server-Install-Table-3]

Profiles

The following profile, based on the DEFAULT Oracle Database profile is created during the execution of the
mooUserSetup.sql script.  Differences to the DEFAULT profile are show in RED.

Profile Adaptations From DEFAULT Profile

CREATE PROFILE
"MOOSERVER" LIMIT
CPU_PER_SESSION
UNLIMITED 
CPU_PER_CALL
UNLIMITED 
CONNECT_TIME
UNLIMITED
IDLE_TIME UNLIMITED
SESSIONS_PER_USER
UNLIMITED
LOGICAL_READS_PER_S
ESSION UNLIMITED
LOGICAL_READS_PER_C
ALL UNLIMITED
PRIVATE_SGA
UNLIMITED
COMPOSITE_LIMIT
UNLIMITED
PASSWORD_LIFE_TIME
UNLIMITED
PASSWORD_GRACE_TIM
E 7
PASSWORD_REUSE_MA
X UNLIMITED
PASSWORD_REUSE_TIM
E UNLIMITED
PASSWORD_LOCK_TIME
DEFAULT
FAILED_LOGIN_ATTEMPT

User expiration and failed attempt locking is delegated to the MOOSERVER
application



myObjectiveOLAP Version 2.9.8

129 / 205

S UNLIMITED
PASSWORD_VERIFY_FU
NCTION NULL;

[myObjectiveOLAP-Server-Install-Table-4]

It is permissible to adapt the mooUserSetup.sql script to use the DEFAULT Oracle Database profile instead
of the MOOSERVER profile, however, you must ensure that a new connection.xml file is distributed to the
user base every time the password times-out.  It would also be possible for an individual user to disable all
users access if the DISABLE_PASSWORD_CHANGE tag is not enabled in your
mooApplicationSettings.xml file.

Roles, Responsibilities and Permissions

The following roles, responsibilities and permissions are granted during execution of the mooUserSetup.sql
installation script.  Where appropriate a reason is included.

USER Change Reason

MOOUSER CONNECT

MOOUSER OLAP_DBA

MOOUSER OLAP_USER

MOOUSER CREATE CUBE

MOOUSER CREATE SESSION 

MOOSERVER UNLIMITED TABLESPACE

MOOSERVER CONNECT

MOOSERVER OLAP_DBA

MOOSERVER OLAP_USER

MOOSERVER CREATE CUBE

MOOSERVER CREATE SESSION 

MOOSERVER ALTER SYSTEM Required for OLAP Session
Management

MOOSERVER SELECT on DBA_SCHEDULER_JOBS Required for OLAP Session
Management

MOOSERVER SELECT on DBA_SYS_PRIVS

MOOSERVER READ    ON DIRECTORY moocda

MOOSERVER WRITE   ON DIRECTORY moocda

MOOSERVER EXECUTE ON DIRECTORY moocda

MOOSERVER READ    ON DIRECTORY logcda

MOOSERVER WRITE   ON DIRECTORY logcda

MOOSERVER READ    ON DIRECTORY olapcda

MOOSERVER WRITE   ON DIRECTORY olapcda

MOOSERVER READ    ON DIRECTORY eifcda 

MOOSERVER WRITE   ON DIRECTORY logcda

MOOUSER SELECT ON MOOSERVER.AW$MOODATA

MOOUSER SELECT ON MOOSERVER.AW$MOOUSER

MOOUSER SELECT ON MOOSERVER.AW$MOOCODE

MOOUSER SELECT ON
MOOSERVER.AW$LOCALCODE

MOOUSER SELECT ON
MOOSERVER.AW$MOORUNNING

MOOUSER SELECT ON MOOSERVER.AW$MOOUSERS



myObjectiveOLAP Version 2.9.8

130 / 205

MOOUSER SELECT ON MOOSERVER.AW$MOOUSERS

MOOUSER SELECT ON MOOSERVER.AW$MOOAWM

MOOUSER SELECT ON
MOOSERVER.AW$MOOBACKUP

MOOUSER SELECT ON MOOSERVER.AW$SUBDATA

MOOUSER SELECT ON DBA_SCHEDULER_JOBS Enables the end-user to view if the
Process Manager is  running.

MOOUSER Update ON MOOSERVER.AW$MOODATA

MOOUSER Update ON MOOSERVER.AW$MOOUSERS

MOOUSER Update ON MOOSERVER.AW$PRCONTROL

MOOUSER Update ON MOOSERVER.AW$MOOAWM

MOOUSER Update ON MOOSERVER.AW$SUBDATA

[myObjectiveOLAP-Server-Install-Table-5]

*  Unlike other parts of the installation script, whilst it is permissible to GRANT additional permissions to
either MOOSERVER or MOOUSER it is NOT permissible to detract from the list above.  Doing so may
result in unexpected operation or failure of your myObjectiveOLAP Server based installation

Directories

You should create at least one directory on the server for use by myObjectiveOLAP, the recommendation is
to create three. 
Your system or database administrator must ensure that the operating system directory has the correct
permissions for the Oracle Database process.  

The default location for the directory aliases is shown below:

Directory Default
Location

Purpose

moocda /u01/
moocda

myObjectiveOLAP stores certain components on the file system temporarily
during the execution of business logic, such as data submission.

olapcda /u01/
logcda

Used by myObjectiveOLAP server when debugging is enabled.

logcda /u01/
logcda

Various levels of logging can be enabled, optionally myObjectiveOLAP can
output these logs as text to the logcda directory.

eifcda /u01/
eifcda

This directory is required during the install, but it is also used as part of a
number of standard tasks, such as automated backup.

[myObjectiveOLAP-Server-Install-Table-6]

*  It is permissible for all the above directory aliases to physically be one file system directory, although it is
recommended to separate them out for ease of analysis and maintenance.

You should edit the following section of the mooSetupUser.sql script prior to installation to match your local
environment:

-- Change the directory file system locations as required.
CREATE OR REPLACE DIRECTORY moocda as  '/u01/moocda';
CREATE OR REPLACE DIRECTORY olapcda as '/u01/logcda';
CREATE OR REPLACE DIRECTORY logcda as  '/u01/logcda';
CREATE OR REPLACE DIRECTORY eifcda as  '/u01/eifcda';

Running mooSetupUser.sql



myObjectiveOLAP Version 2.9.8

131 / 205

Complete the following steps:

Step

Adjust the mooSetupUser.sql script as documented above

Copy the mooSetupUser.sql file to the directory you are going to start sqlPlus in.

Start sqlPlus as Oracle user

Execute the mooSetupUser.sql script

If there are no errors then type COMMIT; [ENTER] or if you wish to exit without committing ROLLBACK;
[ENTER]

[myObjectiveOLAP-Server-Install-Table-7]

Example below:

moo12$ $ORACLE_HOME/bin/sqlplus / as SYSDBA

SQL*Plus: Release 11.2.0.3.0 Production on Wed Feb 1 20:10:04 2012

Copyright (c) 1982, 2011, Oracle.  All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing
options

SQL>
SQL> @mooSetupUser.sql
Grant succeeded.
SQL>
Grant succeeded.

SQL>
Grant succeeded.

SQL>
Grant succeeded.
....[repeated]...
SQL> 
SQL> commit; 
SQL> EXIT

mooSetupEnvironment.sql Overview

The mooSetupEnvironment.sql installation script creates the Analytic Workspaces required to install the
base myObjectiveOLAP Server objects and programs.

You should extract the contents of myObjectiveOLAPServer2012-R[XX].zip and transfer them to the physical
file system location you defined for your eifcda Directory Alias as part of mooSetupUser.sql installation step.

Files used during this part of the installation:

File Purpose

mooSetupEnvironement.sql Installation script for the myObjectiveServer framework.  Can also be used
to revert an existing application to a new install state.

2012-Release-[XX]-
MOODATA.eif

Data and meta-data for use within the main data storage and reporting
component of the environment.



myObjectiveOLAP Version 2.9.8

132 / 205

2012-Release-[XX]-PRD.eif Objects and programs relating to the Process Manager daemon.

2012-Release-[XX]-
PRCONTROL.eif

Data and meta-data for use by the Process Manager framework

2012-Release-[XX]-
MOOUSERS.eif

Data and meta-data for use by the User Management framework.

2012-Release-[XX]-
MOOCODE.eif

Meta-data and Oracle OLAP DML.  This is the core program component of
the myObjectiveOLAP Server framework.

2012-Release-[XX]-
LOCALCODE.eif

Mata-data for housing localized code.

2012-Release-[XX]-
MOOBACKUP.eif

Data and meta-data for automated backup of the environment.

[myObjectiveOLAP-Server-Install-Table-8]

Re-running mooSetupEnvironment.sql

The mooSetupEnvironment.sql installation script can be run at anytime to set your myObjectiveOLAP
Severer environment to a new install state.  
!IMPORTANT! -- This will result in the loss of all data.

Objects and Workspaces Created during Installation mooSetupEnvironment.sql

The following table lists the objects and workspaces created during the execution of the
mooSetupEnvironment.sql installation script.

Workspace / Object Purpose

MOOSERVER.AW$DATA Analytic Workspace designed to store data and act as the main reporting
repository

Meta-data relating to data objects created within the 

MOOSERVER.AW$PRD Analytic Workspace holding objects and OLAP DML programs relating to
the myObjectiveOLAP Process Manager daemon

MOOSERVER.AW$PRCON
TROL

Analytic Workspace holding objects to store control and audit data for the 
Process Manager

MOOSERVER.AW$MOOUS
ERS

Analytic Workspace holding objects relating to users, user control, audit
and data scoping.

MOOSERVER.AW$MOOCO
DE

Analytic Workspace holding the core myObjectiveOLAP Server OLAP DML
programs 

MOOSERVER.AW$LOCAL
CODE

Empty Analytic Workspace in which custom local programs can be stored.
 This workspace is not impacted by the myObjectiveOLAP upgrade
process.

MOOSERVER.AW$MOOBA
CKUP

Analytic Workspace holding objects and OLAP DML relating to automated
backups of the myObjectiveOLAP Server environment.

MOOSERVER.AW$SUBDA
TA

Empty Analytic Workspace used during the processing of user submissions
of data and holds data audit and rollback data.

MOOSERVER.AW$MOOTE
MP

Empty Analytic Workspace used temporarily during execution of business
processes also used as a staging area during upgrade of myObjectiveOLAP
Server.

Running mooSetupEnvironment.sql

Complete the following steps:



myObjectiveOLAP Version 2.9.8

133 / 205

Step

Copy the EIF files listed in myObjectiveOLAP-Server-Install-Table-8 to the directory you defined for eifcda
in table myObjectiveOLAP-Server-Install-Table-6

Copy the mooSetupUser.sql file to the directory you are going to start sqlPlus in.

Start sqlPlus as MOOSERVER user

Execute the mooSetupEnvironment.sql script

If there are no errors then type COMMIT; [ENTER] or if you wish to exit without committing ROLLBACK;
[ENTER]

Example below:

moo12$ $ORACLE_HOME/bin/sqlplus 

SQL*Plus: Release 11.2.0.3.0 Production on Sun Feb 5 16:33:40 2012

Copyright (c) 1982, 2011, Oracle.  All rights reserved.

Enter user-name: mooserver
Enter password: 

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing
options

SQL>
SQL> @mooSetupEnvironment.sql

{OUTPUT SHOWN}
{OUTPUT SHOWN}
{OUTPUT SHOWN}
{OUTPUT SHOWN}

....[repeated]...
SQL> 

! MOOSERVER:>> If this is the first time you have run this you will see
Analytic workspace XXX does not exist. Ignore these errors
! MOOSERVER:>> If you did not see any Errors? You should now issue a COMMIT
or you could ROLLBACK
SQL> commit; 
SQL> EXIT

Setting the initial mooserver application password.

Start Microsoft Excel and press the standard Connection Editor from the myObjectiveOLAP menu group

Complete the appropriate details for the server you have installed myObjectiveOLAP Server on.



myObjectiveOLAP Version 2.9.8

134 / 205

Select the User Manager menu item from the myObjectiveOLAP menu group.



myObjectiveOLAP Version 2.9.8

135 / 205

Ensure the MOOSERVER user is selected, enter a new password and press Save Changes from the
myObjectiveOLAP Ribbon menu.

Your myObjectiveOLAP Server installation is now complete.

Connecting

mooServer Connection

A myObjectiveOLAP mooServer Connection supports additional server side work flow, data submission and
reporting tools.  
This type of connection should only be used with a mooServer enabled environment.

For more information on connecting please see here.

Administration

myObjectiveOLAP Server Administration

myObjectiveOLAP Server contains a number of features to help you manage your application.

The following table's purpose is to give you a quick overview of the features.

Component Purpose

Process Builder Process Builder allows you to:
Run and Schedule Processes
Edit or delete existing Process



myObjectiveOLAP Version 2.9.8

136 / 205

Explain the Execution Plan of an existing Process

Process Manager The Process Manager window controls the mooServer Process Manager.

Workflow Builder Workflow Builder allows you to group Processes or Workflows together into a single
workflow which can either be submitted for execution manually through Process
Builder, or can be configured to respond to an event.

User Management User manager allows you to carry out the following actions:  Create new users,
disable users, reset user passwords, delete users, update user details

Oracle OLAP
Standard
Compatibility

The AWM Compatibility Layer tool automatically builds Relational Views and Tables
based on your myObjectiveOLAP multi-dimensional model.  The relational model
can then be used to easily access multi-dimensional information from native SQL
tools such as SQL Developer, Toad, or more advanced reporting applications like
Oracle BI Enterprise Edition (OBIEE). 

Creating or
modifying a
dimension

myObjectiveOLAP Server enables the creation and maintenance of dimensions
within the MOODATA analytic workspace.

Creating or
modifying a cube

myObjectiveOLAP Server enables the creation and maintenance of cubes within the
MOODATA analytic workspace.

Values, Hierarchies,
Attributes

Whilst in most systems maintenance of Dimension Values and there associated
meta-data is carried out through interfaces (Relational or OLAP), myObjectiveOLAP
Server additionally allows for creation of this meta-data information through Excel,
this enables both ad-hoc maintenance and easy bulk-creation or adaptation of this
data.

Process Management

myObjectiveOLAP Server Process Management

myObjectiveOLAP Server contains a sophisticated Process Management model.  

This section takes you through the steps required to understand the Process Management model, create
and edit Processes, define and edit Workflows.

Process Builder

Process Builder

Process Builder allows you to:

Run and Schedule Processes

Edit or delete existing Process

Explain the Execution Plan of an existing Process

Refreshes the list of processes from the database

Submits a process for execution by the Process Manager.

Saves any changes you have made to an existing Process.



myObjectiveOLAP Version 2.9.8

137 / 205

Allows you to create a new process based on an existing Process.

Deletes an existing Process.

Allows you to define a new Process.

Opens the Process Manager window.

Opens the Workflow Builder window.

Opens the myObjectiveOLAP Help file.

Closes the Process Builder window.

Process Selection

Allows you to choose a process.  Process can be stored in virtual folders to help you group related
processes into easy to find Process Groups.

Once you have selected a process you wish to execute, you can schedule the process using the "Run at
this time" Calendar and Clock interface.

If you want it to run immediately, you can reset the clock to "now" by just pressing the 

 button.

Execution Plan
Once you have selected a process you can view Execution Plan for the selected Process or Workflow by

pressing the,  button.



myObjectiveOLAP Version 2.9.8

138 / 205

The Execution Plan window allows you to see at a glance what is going to be executed by the selected
Process.   The viewer also shows you any Limits that will be applied to the Process.

If you are running a program as part of your process, you can highlight a program, and press the 

 will bring up the OLAP DML program viewer.

Properties

Standard Limits

Standard Limits, allows you to specify any Limits you wish to be applied when the Process is executed.  As
well as LIMIT statements you can enter any free-form OLAP DML statement you wish to be executed. 
Standard limits are part of the Process and usually are set as persistent. 

This Process Limits

This Process Limits, are non-persistent limits and are only executed once when you Submit the process



myObjectiveOLAP Version 2.9.8

139 / 205

this time.   This Process Limits override any Standard Limits.

Program

Program allows you to View, Edit & Save, Copy to Clipboard a program attached to the selected Process.

Process Properties

Protect Process From Delete

Processes protected from delete can not be deleted until the Lock is removed.  This is designed to stop
accidental deletion.   

Program Assigned to Process



myObjectiveOLAP Version 2.9.8

140 / 205

This shows you the OLAP DML program assigned to a Process and allows you to change the assigned
program, press Save Changes after updating the assigned program.

Folder Process Stored In

Folder Process Stored In, is the name of a virtual Folder which the process is stored in.  All Processes are
always stored in the "All" virtual folder.

Create a New Folder

Create a New Folder, allows you to specify a name of a new Folder and assign it to a Process.   If no
processes remain in a Folder, the folder automatically is purged.   A folder can be created again and
processes assigned to it.

Process Name

The name of the process.  This can not be changed, to change the name of a Process, copy the process,
creating it with the desired name and then delete the original Process.

Runtime Information

The runtime information panel indicates which Analytic Workspace the Process or Workflow is designed to
be executed within.

Defining a New Process

Defining a New Process

To define a new Process, select Process Builder from the myObjectiveOLAP tool bar.

From within Process Builder select "New Process"

Complete the following information:

Process ID
A unique identifier of your choice for the process you are creating.  This will be used as the PR.ROW value
within AW$PRCONTROL

Process Description



myObjectiveOLAP Version 2.9.8

141 / 205

A description for your new process

Program Name
The name of either a MOOSERVER standard program such as MOO.AGGREGATE.CUBE (see the
mooServer API) or a custom program of your own.

Analytic Workspace
This is the name of the Oracle OLAP Analytic Workspace which the process will execute in.  Either the
primary myObjectiveOLAP Server MOODATA AW, or and Sub-AW's you have created

Run Mode
This is the mode your Process will run in.   Read Only process can be run in parallel mode, whilst Read
Write processes will run in a serial as soon as possible based on the availability of the specified Analytic
Workspace.

Standard Limits
Any limits you want to apply to your data, prior to execution of the process.

Example of a Standard Limits to aggregate a cube.

The following is an example of Standard Limit using the MOO.AGGREGATE.CUBE program to aggregate a
cube.

lmt cube.row to 'MY_CUBE' Tells the API which cube we
want to aggregate.
lmt dim.row to 'ACCOUNT COST_CENTRE MY_TIME'    Tells the API which dimensions



myObjectiveOLAP Version 2.9.8

142 / 205

to aggregate over

call p.set.mycube.status Tells the API to call a custom
program which sets my dimension value limits and hierarchy
lmt my_time to 'PAPR-12' Limits a dimension which I
didn't want to set in my p.set.mycube.status program 

Copy Process

Copy Process

Pressing the  button from with Process Builder allows you to create a new process
based on an existing selected Process from within Process Builder

Process ID A unique identifier of your choice for the process you are creating.  This
will be used as the PR.ROW value within AW$PRCONTROL

Process Description A description for your new process

Program Name The name of either a MOOSERVER standard program such as
MOO.AGGREGATE.CUBE (see the mooServer API) or a custom program of your own.

Standard Limits Any limits you want to apply to your data, prior to execution of the
process.

Process Manager



myObjectiveOLAP Version 2.9.8

143 / 205

Process Manager

The Process Manager window controls the mooServer Process Manager.   The process manager executes
processes in serial by default.  

The controls available on the Process Manager window differ depending on the database user connected.

Users logged in as MOOUSER (normal users) have no control and are only able to view Processes being

Users logged in as MOOSERVER (Application DBA) users have full control of the Process Manager.

Process Manager (logged in as MOOSERVER)

Controls

Pressing the Start button will start the Process Manager and allow for execution of any jobs already in the
queue.  
This control is not available to users connected as MOOUSER.

Status is updated to:

Quick-glance is updated to:Quick-glance is updated to:

     
Pressing the Stop button will stop the Process Manager immediately.  Any processes already running will



myObjectiveOLAP Version 2.9.8

144 / 205

be terminated.  If Play messages is running, pressing Stop will disable Play messages, it can be re-enabled
on Start.
This control is not available to users connected as MOOUSER.

Status is updated to:  Status is updated to    

Quick-glance is updated to:

Play messages will display the output of any Process or Workflow in the Processing now pane:
This control is not available to users connected as MOOUSER.

Play messages will spawn a second session on the database which will be visible from Session Manager,
playing messages will not interfere with the Application DBA using other controls in the Process Manager
window.    Exiting Process Manager will stop the second session.  Messages are updated every 15
seconds.

Refreshes the queue-grid displaying the status of processes running, queued and completed.

Copies the contents of the queue-grid to the Windows clip-board.

Changes the Poll duration that the Process Daemon (MOOSERVER.PRD$PRD) checks for Processes
waiting to be executed.
This control is not available to users connected as MOOUSER.

Calendar Control

Enables you to set the From and To dates which you want to see displayed in the queue-grid.  Select a
From and To date and then press the Refresh View button.



myObjectiveOLAP Version 2.9.8

145 / 205

Queue grid

The queue grid displays information about Processes.

The following table explains the data presented in the queue-grid.

Object Description

ID A unique ID that has been assigned to a specific Process.   
The unique ID is derived from POSIX time of submission.
This ID can be used when analyzing the Audit log MOOSERVER.SUBDATA

User The user who submitted the process, this is not the database user, but the application user
stored in EXPRESS$ME_USER

Process
Name

The Process name (PR.ROW) that has been submitted for processing.

Submitted The date / time the process was submitted.

Scheduled The date / time the process was scheduled to start.

Started The date / time the process started.

Completed The date / time the process completed.

Status The Status: Queued, Started, Finished, Errored

Duration The length of time the process took to complete.

Seq The sequence (order (integer)) of jobs waiting to be processed.

AW The name of the Oracle OLAP Analytic Workspace which the specified process or workflow
is executing within

RO/RW The mode; Read-only or Read-write for the specified process

DBMS
Process

The name of the DBMS_SCHEDULER job which is running the specific Process or
Workflow

Icon Quick-glance, Queued [Pause Icon] Started [Play Icon], Completed Success [Tick Icon],
Errored [Warning Icon], Unknown State [myObjectiveOLAP Icon]



myObjectiveOLAP Version 2.9.8

146 / 205

Instrumentation

The instrumentation display shows the number of Employed Process Managers, The number of Process
threads can be set within the system configuration.  If no tasks are running then only the one monitoring
Process will be running; stepping up to the maximum specified Process Managers.

Display System Tasks

Internal tasks, for example:  AW Syncing, Report Generators, Object Creation are hidden from the default
view so that only business tasks are visible in the queue grid.   Enabling this option means that all tasks are
displayed in the queue grid.

Quick Selection Reports

A number of predefined reports are available from the Quick Selection menu, all ignore the time selected in
the Calendar control:

All processes
that are queued

Last 25
processes that
have been
processed

Last 10
processes that
have failed.

Displays the
last 25
processes
based on the
selection in the 
Type drop-down
list of
Processes.

Individual Process Management

Right-clicking a process within the Process Management queue enables the Process Quick Access Menu:
  



myObjectiveOLAP Version 2.9.8

147 / 205

Options within the QAM are summarised below:

QAM Option Purpose

Show details Displays details of the execution of a specific task within the Information panel:

Schedule Enables an administrator to re-schedule a queued or completed task to run at
a specified date and time.

Delete Process Deletes a queued process from the queue.

Re-activate process as
Queued

Re-enables a previously executed process to a queue state

Run the Process Manager
for the first task only

If the Process Manager is stopped this will ask the Process Manager to create
a single PM Thread and run the first waiting task in the queue.

Kill this DBMS Process This enables an administrator to kill the PM thread running the selected
process without having to completely shut down the Process Manager, which
may be executing other parallel processes or workflows.

Technical Process Manager Flow Diagram



myObjectiveOLAP Version 2.9.8

148 / 205

Technical Implementation

myObjectiveOLAP Server, Process Manager Technical
Implementation

An Oracle Database administrator may want to understand the technical implementation of the
myObjectiveOLAP Process Manager.   This note together with the Process Manager Flow Diagram found 
here, are designed to aide that understanding.

myObjectiveOLAP Server's Process Manager is based on the standard Oracle database RDBMS scheduler.

You must ensure that you connect to the Oracle Database as the MOOSERVER user before starting or
stopping the Process Manager from sqlPlus.  
Running the Process Manager as a different user is not supported.

Start the Process Manager from sqlPlus

When the Process Manager is started a statement similar to the following PLSQL statement is executed,
passing the polling interval as set from the Process Manager graphical interface.

BEGIN DBMS_SCHEDULER.create_job ( job_name => 'MOOPROCESSOR', job_type => 'PLSQL_BLOCK',
job_action => 'BEGIN dbms_aw.execute(''aw attach MOOSERVER.PRD; PRD; aw detach
MOOSERVER.PRD''); END;', start_date => SYSTIMESTAMP, repeat_interval => 'freq= SECONDLY;
INTERVAL=[INTERGER_POLL_TIME_SECONDS],end_date => NULL, enabled => TRUE, comments =>
'myObjectiveOLAP Server Process Manager'); END;

The myObjectiveOLAP Process Manager graphical user interface also allows a "Run One Process" option,
this executes the following which causes PRD (Process Manager daemon) to execute only one job before
turning the Process Manager off. 



myObjectiveOLAP Version 2.9.8

149 / 205

BEGIN DBMS_SCHEDULER.create_job ( job_name => 'MOOPROCESSOR', job_type => 'PLSQL_BLOCK',
job_action => 'BEGIN dbms_aw.execute(''aw attach MOOSERVER.PRD; PRD; aw detach
MOOSERVER.PRD''); END;', start_date => SYSTIMESTAMP, repeat_interval => null ,end_date =>
NULL, enabled => TRUE, comments => 'myObjectiveOLAP Server Process Manager'); END;

By understanding how the Process Manager is started it would be possible to script the starting of the
process manager daemon.

Stop the Process Manager from sqlPlus

When the Process Manager is asked to stop the following PLSQL is executed.    

BEGIN DBMS_SCHEDULER.stop_job ('MOOPROCESSOR'); END;
BEGIN DBMS_SCHEDULER.disable('MOOPROCESSOR'); END;
BEGIN DBMS_SCHEDULER.drop_job ('MOOPROCESSOR'); END;

This may be useful in ensuring no jobs are running when you wish to bring down the Oracle Database or
backup your mooData analytic workspace.

Note* When asked to stop the myObjectiveOLAP Process Manager stops almost immediately, if it is
currently processing a task the Process is terminated and a ROLLBACK executed. 

Checking the Current Status of the Process Manager from sqlPlus

The following sql select statement displays information from DBA_SCHEDULER_JOBS on the current
status of the myOnjectiveOLAP Process Manager.

Select * from dba_scheduler_jobs WHERE JOB_NAME = 'MOOPROCESSOR';

Start the Process Manager from a myObjectiveOLAP Console Session

A myObjectiveOLAP Server application administrator may wish to run the Process Manager daemon directly
from Oracle OLAP.  To do this you should start an OLAP Console session as the MOOSERVER RDBMS
user and detach all Analytic Workspaces either through the AW DETACH OLAP DML statement or the
Analytic Workspace selector.   They should then attach the PRD Analytic Workspace either through the
"AW ATTACH PRD ro" command followed by executing PRD: "call PRD".  The Process Manager will
process the next task and then exit.

Workflow Builder

Workflow Builder

Workflow Builder allows you to group Processes or Workflows together into a single workflow which can
either be submitted for execution manually through Process Builder, or can be configured to respond to an
event.   

Some Examples of Workflow Use

Example Workflow

Interface file received from
Oracle Retail.

Load Data --> Aggregate Data --> Model Data --> Generate Fixed Reports -->
Generate and Email reconciliation reports.



myObjectiveOLAP Version 2.9.8

150 / 205

Submit Data from Excel Aggregate & Model Data --> Consolidate System --> Generate an interface file
to Oracle Hyperion Financial Management 

Refresh Cube Load structures and data from a relational Star Schema --> Aggregate Data --
> Model Data --> Email Users letting them know.

Workflow Builder, View Mode

Workflow Builder Window consists of the following important panes, when in Viewing Mode:

Pane Description

Workflow List of available Workflows

Processes List of Processes or other Workflows assigned to the selected Workflow

Information Information about the selected Workflow and its Lock status.

Workflow Builder, New Mode

Workflow Builder Window consists of the following important panes, when in New or Edit Workflow Mode:



myObjectiveOLAP Version 2.9.8

151 / 205

Pane Description

Workflow List of available Processes and Workflows

Processes List of processes assigned to the Workflow

Information Information about the selected Workflow and its Lock status.

Workflow Builder Controls

Control Description

Refreshes the list of available workflows.

Change Workflow Builder to New mode

Deletes the selected workflow, honors the prevent accidental deletion lock.

Generates an execution plan for the selected Workflow

Changes the Workflow Builder to Edit mode

In New / Edit mode Processes can be removed from the workflow by dragging
them into the bin.

Submission

Workflows are submitted to the Process Manager for execution via the Process Builder Window.  



myObjectiveOLAP Version 2.9.8

152 / 205

Workflows are automatically added to the Workflows virtual folder.

 Hint:  Many Processes and Workflows could have similar names.  When defining Processes and
Workflows, consider adding a (PR) and (WF) suffix to easily distinguish between them in the Process
Builder window.  

User Management

User Management  

User manager allows you to carry out the following actions:

Control Actions

Enter "New User" mode, complete all fields.

Creates the new user, validates user details

Saves changes to an existing user.

Deletes the selected user.

Reloads user information from myObjectiveOLAP Server

Enables disabling of a user account without deleting the account.

Enables specifying a user account as being capable of administrative
functions

User Manager 

The below image shows the User Management interface.



myObjectiveOLAP Version 2.9.8

153 / 205

Oracle OLAP Standard Compatability

Build AWM Compat Layer

Building the AWM Compatibility Layer

The AWM Compatibility Layer tool automatically builds Relational Views and Tables based on your
myObjectiveOLAP multi-dimensional model.  The relational model can then be used to easily access multi-
dimensional information from native SQL tools such as SQL Developer, Toad, or more advanced reporting
applications like Oracle BI Enterprise Edition (OBIEE).  

The compatibility layer initially creates a View of each multi-dimensional object and then snapshots that
view into a table.  This means you are able to use the MOOAWM Analytic Workspace to build formula
variables within AWM based on star schema structural information sourced from the compatibility layer.  
 
Note:  Do not attempt to build AWM structural data based on the views themselves as this will cause
erroneous errors as the OLAP engine attempts to retrieve data from myObjectiveOLAP server whilst building
structures in another OLAP AW in the same session.



myObjectiveOLAP Version 2.9.8

154 / 205

The below image shows the Build AWM Compatibility control.

The tool consists of the following controls and panes:

Control / Pane Action

Start the build of the compatability relational layer

Copies the contents of Output to the Windows clipboard

Ask the compatibility layer program to Drop the relational tables
and re-create instead of just truncating and re-populating from
the created views.

Information Information related to the build and any major errors.  Also
indicates the API call which the wizard uses to create the
Relational layer.

Output A report of the build including all the SQL executed during the
build.   
This also includes any errors encountered during the build.

Looking at the output



myObjectiveOLAP Version 2.9.8

155 / 205

Once complete you can run SQL from any client against the compatability layer:

Result:

Structures

Structural Maintenance

myObjectiveOLAP Server enables the creation and maintenance of structures within the MOODATA analytic
workspace.

Dimensional maintenance

Dimensional maintenance is carried out through the Dimensions form:

Cube maintenance

Cube maintenance is carried out through the Cubes form:



myObjectiveOLAP Version 2.9.8

156 / 205

Values, hierarchies, attributes.

Whilst in most systems maintenance of Dimension Values and there associated meta-data is carried out
through interfaces (Relational or OLAP), myObjectiveOLAP Server additionally allows for creation of this
meta-data information through Excel, this enables both ad-hoc maintenance and easy bulk-creation or
adaptation of this data.

Creating or modifying a dimension

Dimensional Maintenance

myObjectiveOLAP Server enables the creation and maintenance of dimensions within the MOODATA
analytic workspace.

Dimensional maintenance

The Dimensional Explorer window is shown below.   You can select any existing dimension from the left
Available Dimension pane.

Selecting a dimension shows you information about that dimension in the Dimension details pane, and lists
all objects using that dimension.



myObjectiveOLAP Version 2.9.8

157 / 205

Pressing the Delete Dimension button will cause myObjectiveOLAP to ask if you sure?, if we say Yes to
this myObjectiveOLAP will ask if you want to cascade this deletion.  As you can see in the "Objects Using
This Dimension" information pane, ORGCO is used by many variables and data cubes.  If I were to say Yes
at this point all of the objects listed above would be deleted.

If I say No to this question a MOO_DELETEDIMENSION Process will be submitted to the Process Manager
but it will fail:

as the objects still exist.

Delete dimension uses the MOO.DELETE.DIM API.

To create a new dimension press the New Dimension button, enter a name for your dimension.

Enter a description for the Dimension.

Multi-AW Mode

Withing the Analytic Workspace Implementation pane you can select the Analytic Workspace you wish to
physically create your dimension within.   Prior to myObjectiveOLAP Server 2.9.8 all data and data-
dictionary components were created within the primary myObjectiveOLAP Analytic Workspace
(MOODATA).   

Post myObjectiveOLAP 2.9.8 it is possible to choose a specific child Analytic Workspace in which to
create your dimension:

Shadow Dimensions allow you to maintain a dimension in a child Analytic Workspace which is mirrored
from a dimension which is maintained within a different Analytic Workspace.    myObjectiveOLAP Server will
automatically ensure synchronisation of a shadow dimension to its master dimension.   Additional values
may be added to the shadow dimension which do not exist in the master, however, these will not be
synchronized back to the master.

In the following example a new dimension will be created in the Analytic Workspace "My First Sub AW" and



myObjectiveOLAP Version 2.9.8

158 / 205

will be mastered from the master dimension "GL: Time".   myObjectiveOLAP will ensure that all values,
descriptions, hierarchies created and registered against the master dimension are mirrored within the child:

 

Once you have chosen to create a shadow dimension it is no longer possible to choose the dimension data-
type or to specify if you want the meta-data created.   The dimension will be completely mastered from the
original and that includes its data-type:

Press Save to start the creation and synchronisation process:

myObjectiveOLAP will create two Processes in the Process Manager:

The first process creates and registers your new dimension in the MOODATA primary Analytic Workspace.
   The second dimension defines the physical object within the child Analytic Workspace.

myObjectiveOLAP server will also spawn a synchronisation process for each analytic workspace defined
within the application:

Note; in order to view these system processes the Display switch must be toggled to ON.

Non Multi-AW Mode

If you are creating a master dimension you should choose the data-type for your new dimension from the
drop down Type list.

Choose if you want myObjectiveOLAP to create the meta-data variables or just register them.  Typically you
would leave this as TRUE unless you are merging existing structures from an Oracle Financial Analyzer
(OFA), Oracle Sales Analyzer (OSA) or legacy Oracle Express database into Oracle OLAP, in which case
you would complete the MetaData Information box with your legacy variable names and set the Create
MetaData on Save to FALSE, then import your OFA structures from an EIF file.

Press Save to save your dimension.



myObjectiveOLAP Version 2.9.8

159 / 205

myObjectiveOLAP will give you a "ticket" for the dimension creation process

Your dimensional creation will be processed through the Process Manager

Information and the exact arguments to the MOO.CREATE.DIM API are displayed in the Process Manager
Details information pane.

Pressing the Unlock to allow editing will allow you to edit the description of your dimension.

Press Save to save your changes, you will be given a "ticket" for your change:

Your MOO_CHANGEDIMENSION Process will be processed by the Process Manager

Details, including the API call arguments to MOO.CHANGE.DIM will be displayed in the Process Manager
details pane:

31DEC12 17:55:52 Finished MOO: Update The Dimensional MetaData Magazine
31DEC12 17:55:52 With argument 'MY_DIMENSION' 'MY_DIMENSION_LONG' 'MY_DIMENSION_SHORT'
'MY_DIMENSION_DESC' 'MY_DIMENSION_HP' 'my dimension description CHANGED'  TRUE 
31DEC12 17:55:52 Running MOO.CHANGE.DIM
31DEC12 17:55:52 Started MOO: Update The Dimensional MetaData Magazine



myObjectiveOLAP Version 2.9.8

160 / 205

If you do not Exit and Re-open the Dimensional configuration window, you can see your new dimension
added to the Available Dimensions pane after it has progressed through the Process Manager by pressing
the Refresh Dimension List button.

Creating or modifying a cube

Cube Maintenance

myObjectiveOLAP Server enables the creation and maintenance of cubes within the MOODATA analytic
workspace.

Cube maintenance

The Cube Explorer window is shown below.   You can select any existing cube from the left available Cubes
pane.

Selecting a cube displays the following information:

Object Details

Dimension
Information

Lists the dimensions, dimension descriptions, dimension order



myObjectiveOLAP Version 2.9.8

161 / 205

Composite Names the composite and the dimensions which form part of the a composite
dimension on the selected cube.  

Advanced information is shown in the Information pane:

Object Details

Cube ID Unique identifier for the internal object name (CUBE.ROW)

Cube Description Description for the Cube

PostProcess Name of an OLAP DML program which you want to be executed before data
submission is processed.

PreProcess Name of an OLAP DML 
program which you want to be executed after data submission is processed

Internal Object Identifier if the cube is classed as "Protected" internal.

Cube Type Cube Data-type

Formula Boolean, is the cube a formula?

In the lower-left corner the name of the Analytic Workspace where the physical object has been created is
displayed.

Pressing the Delete Cube button will cause myObjectiveOLAP to ask if you sure?, if we say Yes to this
myObjectiveOLAP will submit a MOO_DELETECUBE Process to the Process Manager.

Information about the deletion will logged and available in the Process Manager details pane:

31DEC12 18:03:24 Finished MOO: Delete Cube
31DEC12 18:03:22 With argument 'JUSTCUBE'  
31DEC12 18:03:22 Running MOO.DELETE.CUBE
31DEC12 18:03:22 Started MOO: Delete Cube

When you press New Cube, you are immediately asked which Analytic Workspace you want to create your
cube in:



myObjectiveOLAP Version 2.9.8

162 / 205

You can either choose the myObjectiveOLAP Primary Analytic Workspace (MOODATA), which was the
default before myObjectiveOLAP 2.9.8.   

Or you can chose a child Analytic Workspace which has been created through Analytical Workspace
Control

Once you have chosen which Analytic Workspace to create your cube within, only the dimensions which
have been defined within the Analytic Workspace will be available to you for selection:



myObjectiveOLAP Version 2.9.8

163 / 205

To define the dimensionality of your cube drag your dimensions from the All My Dimensions panel to the
Dimension Information panel:

The order in which your dimensions are shown will control the order in which they are defined within the
Oracle OLAP Analytic Workspace.

To composite your cube, you should drag the dimensions from the Dimension Information panel to the
Composite Dimensions panel:



myObjectiveOLAP Version 2.9.8

164 / 205

To remove a dimension from either the cube definition or the composite drag and drop the dimension from
the appropriate panel onto the rubbish-bin icon:

Values, hierarchies, attributes.

Values, Hierarchies and Attribute Maintenance

Whilst in most systems maintenance of Dimension Values and there associated meta-data is carried out
through interfaces (Relational or OLAP), myObjectiveOLAP Server additionally allows for creation of this
meta-data information through Excel, this enables both ad-hoc maintenance and easy bulk-creation or
adaptation of this data.

Open a myObjectiveOLAP Structural upload template.

Column 1, Row 1 Enter the Dimension name you wish to maintain.
Column 2 ---> N, Row 1 Enter the names of any Variables, Attributes or Hierarchies you
want to maintain.
Column 1, Row 2 --> N Enter the values of any new dimension values, or existing
dimension values you wish to maintain.
Column 2 --> N, Row 2 --> N Enter the meta-data information you wish to apply to the
dimension value on the same row.

In the following example we are going to create two dimension values on the Account dimension and
populate the description information associated with that dimension.



myObjectiveOLAP Version 2.9.8

165 / 205

Now we prime the Structural upload template by running the Update Configuration Sheet menu item.

Now we submit our changes to the database by running the Update Structures menu item.

This places a SUBMITDATA Process in the Process Manager:



myObjectiveOLAP Version 2.9.8

166 / 205

Details of the Process are shown in the detail view:

   
01JAN13 12:35:19 Saving MOO: Structural Maintenance

If we open a console session we can see our dimension values have been created and our meta-data
updated.

> rpr w 30 down account w 34 account_desc

ACCOUNT                                   ACCOUNT_DESC
------------------------------ ----------------------------------
Account1                       Account 1 Description
Account2                       Account 2 Description

You can either re-use the existing Structural Maintenance Template, or save them as dimension specific
and add them to your structural maintenance library.

System Configuration

System Configuration

myObjectiveOLAP Server enables the application administrator to control global system options through the
System Configuration upload template.

System Configuration Keys



myObjectiveOLAP Version 2.9.8

167 / 205

The application administrator can change any of the options, detailed descriptions of the system
configuration key values are shown in the table below:

Key Example Description

FAILED_PASSWORD_LOCK NO Determines if a non-admin account is locked
in USER.CTL if a user supplies an incorrect
password on connecting to Oracle OLAP.   

If FAILED_PASSWORD_LOCK is set to NO
then a user has unlimited password attempts.

If an integer value is supplied then
myObjectiveOLAP Server records the number
of failed password attempts and will expire an
account after the
FAILED_PASSWORD_LOCK value is
reached.

This setting has no impact on user-accounts
defined as Admin.

Valid values:

     NO

     Integer [3]

FAILED_PASSWORD_LOCK_
ADMIN_USER

NO Determines if an admin account is locked in
USER.CTL if a user supplies an incorrect
password on connecting to Oracle OLAP.   

If FAILED_PASSWORD_LOCK is set to NO
then a user has unlimited password attempts.

If an integer value is supplied then
myObjectiveOLAP Server records the number
of failed password attempts and will expire an
account after the
FAILED_PASSWORD_LOCK value is
reached.

Valid values:

     NO

     Integer [3]

PASSWORD_AGEING_USER 90 Determines the number of days before a non-
admin user is prompted to change their
password

Valid values:

     NO

     Integer [3]

PASSWORD_AGEING_ADMI NO Determines the number of days before an



myObjectiveOLAP Version 2.9.8

168 / 205

N admin user is prompted to change their
password

Valid values:

     NO

     Integer [3]

LSDIR_LOCATION /home/oracle/
moolistfiles.sh

The physical location of the moolistfiles.sh
shell script

CHMOD_LOCATION /u01/shells/moochmod.sh The physical location of the moochmod.sh
shell script

MAILX_LOCATION /u01/shells/moomailx.sh The physical location of the moomailx.sh
shell script

MAILX_ATTACH_LOCATION /home/oracle/
moomailx_attach.sh

The physical location of the
moomailx_attach.sh shell script

MOOCDA_LOCATION /u01/moocda/ The file-system location of the moocda
directory alias

OLAPCDA_LOCATION /u01/logcda/ The file-system location of the olapcda
directory alias.  Note it is permissible to
share file-system locations across directory
alias.

LOGCDA_LOCATION /u01/logcda/ The file-system location of the logcda
directory alias

EIFCDA_LOCATION /u01/eifcda/ The file-system location of the eifcda
directory alias

KILL_SESSION_LOCATION /u01/logcda/
olap_kill_proc.sh

The physical location of the olap_kill_proc.sh
shell script

HASH_TYPE SHA1 HASH_TYPE

This is the Type of hashing applied to
passwords stored and checked by
mooserver.

Default is TDES encryption and this will be
used if no setting is applied.

Other available valid settings are:

   SHA1
   SHA256
   SHA512

If an invalid setting is applied for example
SHA666 then TDES will be applied.  

Changing this setting will invalidate all saved
passwords.  To reset passwords after a
change use the User Manager tool, or to
generate a standard password with a valid
hash to update the USER.CFG magazine
download the myObjectiveOLAP Hash
Creation tool from the myObjectiveOLAP



myObjectiveOLAP Version 2.9.8

169 / 205

support site.

Updating System Configuration Keys

Once you have updated any keys with settings specific to your installation, you should apply them to the
system by choosing the "Upload System Config" from the mooServer System Config menu.

Your changes will be sent to the Process Manager for validation, and will then be applied to the system.

Once your SUBMITDATA Process has been processed by the Process Manager, you can check the current
values in the system by running the "Refresh Values from System" menu item from mooServer System
Config menu.  This will populate the System Configuration upload template with that latest values stored in
the database.



myObjectiveOLAP Version 2.9.8

170 / 205

Health Check

Health Check

myObjectiveOLAP Server has a built in function to check the health of your system and identify any
potential problems.

Access to the Health Check tool is from the myObjectiveOLAP Server menu.

To run the health check, press the Start Health Check button.

Review the output and fix any issues which the Health Check tool reports, if you are unsure contact
Support.

The Health Check tool runs the following OLAP DML MOOSERVER.MOOCODE!MOO.META.CHECK

MOO.META.CHECK is structured in a modular manner, and is pre-populated with standard checks, you are
free to add any additional checks by adding the following template module:

call moo.attach.aw('MOOSERVER.AW_IN_WHICH_YOU_WANT_TO_RUN_THE_CHECK')
[
  Either your code or a call to your own program.
  If you are calling your own code you should place the following additional attach
  statements
  [
   call moo.attach.aw('MOOSERVER.LOCALCODE')
   call moo.detach.aw('MOOSERVER.LOCALCODE')
  ]
]
call moo.detach.aw('MOOSERVER.AW_IN_WHICH_YOU_WANT_TO_RUN_THE_CHECK')

You should backup your MOO.META.CHECK program text before any myObjectiveOLAP Server upgrades
are completed and ensure that you add any additional custom modules code into the upgraded version.  
The upgrade process will automatically attempt to merge your changes into any new versions, but you
should always check the result post upgrade.

mooServer Backup

mooServer Backup

myObjectiveOLAP Server enables you to quickly and easily snapshot your meta-data analytic workspaces.

To access the mooServer Backup utility access the tool from the myObjectiveOLAP Server ribbon menu.



myObjectiveOLAP Version 2.9.8

171 / 205

Enter a valid Oracle database directory alias which the MOOSERVER database user has WRITE access to
and press Save.

The backup tool will backup the following analytic workspaces:

Analytic
Workspace

Contents

MOOCODE myObjectiveOLAP standard server code

LOCALCODE Your local OLAP DML programs

PRD The Process Manager daemon

MOOUSERS All the information and meta-data relating to your application users.

PRCONTROL All the information and meta-data relating to your application Processes and
Workflows

All the analytic workspaces will be exported in EIF format to the directory alias supplied.  If an invalid
directory alias or no alias is supplied, myObjectiveOLAP will report an error.

EIF files will be created in the following format:

[POSIX time]_[DDMMMYY]_[HH]:[MM]:[SS]_[AWNAME].eif

Backups can be queried either by creating a report, or looking at the
MOOSERVER.MOOBACKUP$BACKUP.CTL variable:

> aw attach MOOBACKUP ro

> lmt BACKUP to last 1

> rpr w 40 down BACKUP.ATT w 50 BACKUP.CTL

                                         --------------------
BACKUP.CTL--------------------
                                         ----------------------
BACKUP----------------------
BACKUP.ATT                                                   1357052585
----------------------------------------
--------------------------------------------------



myObjectiveOLAP Version 2.9.8

172 / 205

LOG                                      01JAN13 15:03:05 Backup up MOOCODE
                                         01JAN13 15:03:05 Backup up LOCALCODE
                                         01JAN13 15:03:05 Backup up PRD
                                         01JAN13 15:03:05 Backup up PRCONTROL
                                         01JAN13 15:03:05 Backup up MOOUSERS
MOOCODE_FILE                             1357052585_01JAN13_15:03:05_MOOCODE.eif
MOOLOCALCODE_FILE                        1357052585_01JAN13_15:03:05_LOCALCODE.eif
PRD_FILE                                 1357052585_01JAN13_15:03:05_PRD.eif
MOOUSERS_FILE                            1357052585_01JAN13_15:03:05_MOOUSERS.eif
CDA                                      OLAPCDA
PRCONTROL_FILE                           1357052585_01JAN13_15:03:05_PRCONTROL.eif

> aw detach MOOBACKUP

Backups of MOODATA would normally be carried out as part of your database backup and recovery
strategy. RMAN etc....

Multi AW Mode

Multi AW Mode

myObjectiveOLAP enables multiple Analytic Workspaces to be created for end-user data.   Dimensions can
be shared between the Analytic Workspaces, data transferred, and Processes and Workflows enabled for
each Analytic Workspace.

myObjectiveOLAP Server enables full partitioning of the security model across cubes, dimensions or at the
Analytic Workspace level.

Reasons to consider Multi-AW

§ Hard partition your security model.
§ Enable parallel Process Manager.
§ Segregate your data model.

The following topics take you through the management of Multi AW mode.

Managing Multi AW

Managing Multi AW Mode

myObjectiveOLAP Analytic Workspace Control enables you to create or delete new child Analytic



myObjectiveOLAP Version 2.9.8

173 / 205

Workspaces.   You will always have the primary Analytic Workspace MOODATA, which contains the data
dictionary for your application, although should you choose no data needs to be stored within the primary
analytic workspace.    Multi AW mode was introduced in myObjectiveOLAP Server 2.9.8, applications
created prior to 2.9.8 can take advantage of Multi AW by upgrading to 2.9.8.

Option Purpose

New Analytic
Workspace

Create a new Analytic Workspace and register it in the application configuration.  
As soon as you create a new Analytic Workspace users will have the new Analytic
Workspace attached when they login.   Dimensions and cubes can be created in
the child Analytic Workspace.   Processes and Workflows can be defined to
execute within the Analytic Workspace.  A synchronisation process will execute in
the Process Manager to register the meta-data for the new Analytic Workspace:

Delete Analytic
Workspace

Deletes an Analytic Workspace and removes it from the data model.

Refresh View Refreshes the view of all Analytic Workspaces

Once a new Analytic Workspace has been created you will be able to assign objects and processes to be



myObjectiveOLAP Version 2.9.8

174 / 205

assigned to it.

Workflows and Processes can be identified as running in a specific Analytic Workspace through the 
Process Manager

Submitting Data

Submitting Data

User data can be submitted to the database directly from within Microsoft Excel.  This offers the end-user
the comfort of a familiar environment and enables them to model data within Excel and submit the final
result.   All the upload templates also act as reports retrieving the data already loaded into the system so
the user can view previously submitted data.

Users of "SDMC OFA Connect" often localized to "{YourCompanyName} OFA Connect" can take advantage
of the "myObjectiveOLAP Upload Upgrade Tool", please contact for support for a copy of the tool and
instructions for use.

Excel Reporting Functions

mooServer Excel Functions

The following functions can only be used against mooServer enabled Oracle OLAP Analytic Workspaces.

They are used to meet ad-hoc or complex reporting requirements.

These can be used by users of mooServer in addition to the standard myObjectiveOLAP Microsoft Excel
Functions.

mooDimDesc

=mooDimDesc(“[DIMENSION]”, “[DIMENSION_VALUE]”, [OPTION]) 

Returns the description for a given dimension value in a mooServer enabled Analytic Workspace

Syntax

=mooDimDesc("[DIMENSION]", "[DIMENSION_VALUE]", [OPTION]) 

Return Value

STRING

Option

   The third option argument tells the mooDimDesc function what description you wish to retrieve:

Option   0
       Passing 0 returns the column description

Option   1
       Passing 1 returns the row description

Option   2
       Passing 2 returns the long description description



myObjectiveOLAP Version 2.9.8

175 / 205

Example 1

=mooDimDesc("CUSTOMER", "ACCOUNT_BAVARIAN IND", 0)

Example Output

ACCOUNT_BAVARIAN IND

Example 2

=mooDimDesc("CUSTOMER", "ACCOUNT_BAVARIAN IND", 1)

Example Output

Bavarian Industries

Example 3

=mooDimDesc("CUSTOMER", "ACCOUNT_BAVARIAN IND", 2)

Example Output

ACCOUNT_BAVARIAN IND Bavarian Industries

mooCellQDR

=mooCellQDR(“[CUBE]”, “[dim1]”, “[dim1value]”, “[dim2]”,
“[dim2value]”, etc....) 

Returns the numeric result of a qualified data reference from a numerical variable within an Analytic
Workspace.

Syntax

=mooCellQDR("[CUBE]", "[dim1]", "[dim1value]", "[dim2]",
"[dim2value]", etc....)  

Return Value

DECIMAL

Example

=mooCellQDR("UNITS_CUBE_COST", "CUSTOMER", "ACCOUNT_BAVARIAN IND",
"TIME", "MONTH_2006.02", "CHANNEL", "TOTAL_TOTAL", "PRODUCT", "TOTAL_TOTAL")



myObjectiveOLAP Version 2.9.8

176 / 205

Example Output

41822.97

Limitations

· Can only be used to return numerical data, TEXT / STRING data must be returned using the
mooCellQDRString() function.

· mooCellQDR can not be seen interacting with the OLAP engine through the Oracle OLAP RECAP
DML statement.  

· myObjectiveOLAP supports retrieving data using mooCellQDR on cube between 1 and 14 dimensions
in size.

Data Explorer

Data Explorer

Data Explorer provides a graphical tool for reporting on OLAP data from a myObjectiveOLAP Server enabled
Oracle OLAP database. 

OLAP data is stored in ‘Cubes'. The edges of the cubes are dimensions, and they represent business
organisational elements such as Cost Centres, Products and Time Periods. A cube may have several
dimensions of varying sizes, and dimensions may have hundreds or thousands of values.

An important aspect of dimensions is that they are usually hierarchical, and this allows the data in the cube
to be aggregated into higher levels in the organisations, and it also allows a structured access route to the
data (by ‘drilling down' through the hierarchy).

Cubes can therefore be very large, and commonly they are populated with data in particular regions but
empty in others. The ‘emptiness' of the cube is referred to as ‘sparsity'. It is important therefore to have a
good understanding of the dimensions used by the organisation when selecting data for reporting

Using Data Explorer

Using Data Explorer

Select Data Explorer from the main myObjectiveOLAP menu.

This opens the Data Explorer Designer tool, initially at the Layout Designer panel.



myObjectiveOLAP Version 2.9.8

177 / 205

The top part of the screen shows the selection tabs to the Work Area panels of the Data Explorer tool.

Work Area

Each Work Area panel allows for different actions to be taken during the construction, running or
maintenance of your report.

The Work Areas are summarised below:

Work Area Summary

Layout Designer Choose a cube and its associated dimensions, assign the dimensions to rows and
columns of the report, and include header, footer and formatting.

Selector Refine the dimensions to reduce the scope of the report

Report Displays the report, and allows some fine-tuning of the report appearance.

Management Enables you to Save your report definition, open a saved report or
schedule to be run by the server and emailed to you at a later date and
time.

Advanced This panel can be used by your application administrator to understand
the impact of your report on the Oracle OLAP data model

Common Controls

The Common Controls Ribbon Menu is always available to you, irrespective of which Work Area you are
currently working in.

The purpose of the Common Controls are summarised below:



myObjectiveOLAP Version 2.9.8

178 / 205

Common Control Summary

Access the myObjectiveOLAP Help system.

Exports the current data selection to Microsoft Excel

Saves the current Data Selection to Microsoft Excel

Discards the current report and start a new one.

Exit Data Explorer

Resets your connection to the database, allowing you to see the latest data-set. 
Note this will reset your report selections

Layout Designer

Layout Designer

Layout Designer allows you to select the Cube you want to view and the row, column and paging dimension
axis for your report.

Use the Cube drop-down selector to choose the cube you wish to view.

The Report Indent Hierarchy drop-down list, if populated, allows you to choose a hierarchy (a dimension may
have many hierarchies). If the dimension forms the lowest level of rows of your report, the rows will be
indented according to the level within the selected hierarchy. This enables you to see the relationship



myObjectiveOLAP Version 2.9.8

179 / 205

between rows for a hierarchical dimension. If the dimension has no hierarchy, this box will be empty. This
drop-down list is only populated after you have selected one or more dimensions for the rows of your report.

Below this will appear a list of the dimensions of the cube. These are available to become the rows, columns
and pages of the report.

To assign a dimension to the columns of the report, drag the dimension name to the Column Dimensions
box (far right).

To assign a dimension to the rows of the report, drag the dimension name to the Row Dimensions box
(lower centre).

Rows and columns can comprise more than one dimension, and any remaining dimensions not assigned
will form the paging dimensions of the report.

The upper centre portion of the Work Area allow you to give the report a text header and footer, provide a
worksheet name, and to set the display options.

Row and Column suppression allow rows and columns to be omitted from the report if they contain no data,
or if the data contains only zeros. ‘NA' which means that no data has ever existed against the specified
combination. 

Selector

Selector

The purpose of the Selector tab is to reduce the scope of the report, by selecting only those dimension
values that are appropriate for the report. 

Overview

The left half of the screen contains the Available Panel, this allows you to locate the dimension values you
require, using a hierarchy if appropriate. The right half of the screen contains the Selected Panel, which



myObjectiveOLAP Version 2.9.8

180 / 205

displays a list of dimension values which you have selected. To move dimension values from Available to
Selected just drag and drop selected dimension values from left to right.

The Dimension drop-down selector allows you to select a dimension of the cube. Select each of these in
turn, and make your selection from the pane below. You can also make multiple selections by using the
Shift or Ctrl keys. To highlight a block of dimension values, highlight the first value, then highlight the last
while holding down the Ctrl key. The whole block should be highlighted. To highlight several separated
dimension values, hold down the Ctrl key while clicking on each required value. You can also remove
selected values by clicking on them again. Drag and drop the highlighted multiple selection into the right
panel.

Row and Column dimensions will usually have multiple dimension values. For other dimensions, only the
first value in the selection list will be visible in your report, so it is best to select only one value.

Hierarchies are initially displayed in the ‘collapsed' state. Expand a branch of the hierarchy by clicking on
the [+] symbol. Drag any ‘branch' or ‘leaf' of the hierarchy into the right pane.

At the lower edge of the panel there are some check boxes that allow you to select values from within the
hierarchy based on your selection. Highlight a dimension value and click one of the relation boxes. Then
drag the dimension value into the Selected panel. The relations will also be added to the right Selected
panel.

Search tool

To search for a dimension value, type a part of its name into the box and click the magnifying glass symbol.
The Dimension value list will show a sub-set according to your search string. To revert to the full list, clear
the search box and click the magnifying glass symbol again.  You must turn off the Hierarchy to enable the
Search Tool

Clear Selection

Pressing Clear Selection will remove all values that have previously been Selected.

 
Removing individual values

To remove individual unwanted values, you can drag and drop them into the bin at lower right.

Report

Report



myObjectiveOLAP Version 2.9.8

181 / 205

This tab displays the report in a spreadsheet layout. Click the Run report button to re-display the report
data.

At the top of the work area there are some options which control the display of data:

The following tables summarises the purpose of the Report Options

Option Summary

Excel Number Format How the data will be formatted when exported to Excel

Description Type How the dimension values are presented in the report.

Commas [check-box] Whether commas are used as thousands separators

Export QDR [check-
box]

Report cells will contain QDR formulas (see Export Excel)

Display Paging
Information [check-
box]

Displays values of Paging dimensions at the top of the report

Display Cube Name
[check-box]

Displays the Cube name at the top of the report.

Management

Management

Management enables you to manage your reports library.  

The following sub-menus group the management console:

Menu Summary

Save Save a created report definition to the database so it can be run at a later date and
time.

Library Details Contains all reports you have saved. You can open one of your reports by double-
clicking the report id in the first column.

Report Folders Allows you to organise your reports into folders. Also allows you to schedule



myObjectiveOLAP Version 2.9.8

182 / 205

reports for running at a later time, and to run them at regular intervals.

My Scheduled
Reports

Displays reports which are scheduled to run later, and allow you to cancel a
scheduled report.

Delete Selected
Report

Allows deletion of reports in tabs where they are displayed.

Apply Report
Settings

Allows a report to be loaded without loading data.

Saving your report definition

This allows you to save the current report definition as a named report.

OLAP Report Name : {enter a meaningful name for your report}

Excel Worksheet Name : {enter a worksheet name}   This will appear as the sheet name when you export
your report to Excel.

Click the Save button.

An important aspect of saving Reports in myObjectiveOLAP is that they are saved without data. Reports are
saved in an OLAP workspace. Each time you open or run a report, it will be populated with the current data
(as at the time you logged in or Refreshed Data - see below).

The panel below the Save button provides a technical report on details of the saved report (this can
sometimes be useful for support purposes).   The final line of the Output will display the assigned Report ID
when saving a report:

Re port Save d Succe ssful l y .   Re port ID: 1389257738

Library Details

This provides a list of your reports, displayed in tabular format with the following columns:

You can sort the list of reports by any of the columns by clicking on the column name tile. Click again to
reverse the sort order.

To run a report, double-click on the Report ID. This is affected by the Apply Report Settings check-box. If
the box is checked, the report definition is loaded but the report is not run. This allows you to modify the
report before running it.

To delete a report, highlight the Report ID and click the Delete Selected Report button above the column
titles. You will be asked to verify your intention to delete the report.

Report Folders

Your report library can be organised into folders to enable you to manage them more easily.



myObjectiveOLAP Version 2.9.8

183 / 205

The list of reports is presented in a hierarchical format, arranged into folders that you can create according
to your requirements.

The following mini Ribbon menu options are available:

Ribbon Item Summary

New Folder Create a new folder.  
Highlight the place where you want to create the folder (Library, or another folder), and
click the New Folder Tab. The dialog box requests a folder name

Delete Delete a report or folder
Highlight the report or folder for deletion and click the Delete button.

Refresh Refresh the library from the database

Run Report Run the selected report

Scheduled Reports

You can schedule a report to run at a later time, or at intervals. Highlight the Report ID in the Library
hierarchy. The fields in the schedule panel will then be available



myObjectiveOLAP Version 2.9.8

184 / 205

Click on the field marked ‘Schedule a report to run at a later time' to open a Graphical Date/Time selector
tool. Select a future date and time.

If you wish to run your report at repeating intervals, click the Recurring button so that it displays ON. 

Then click on the ‘Run Until … ' field to choose an end Date and Time. Select the Frequency in Hours, Days
or Weeks. When you are happy with your settings, click Submit Request. Your scheduled report will appear
in the table below.



myObjectiveOLAP Version 2.9.8

185 / 205

Each report can be scheduled with up to five schedule slots.

Your report will be emailed to the email address shown below the Submit Request button.   This is the email
address which has been defined by your myObjectiveOLAP Server administrator and cannot be changed by
the end-user.

If you want to delete a scheduled report, right-click on the row in the table and choose ‘Stop Scheduled
Report'.

My Scheduled Reports

My Scheduled Reports lists all reports scheduled under your user ID.  Right-clicking on an individual
scheduled report allows you to stop an individual report schedule.

Delete Selected Report button

When using the Library Details or the Report Folders, you can delete a report by highlighting the report
name and clicking on the Delete Selected Report button. A dialog box will ask you to verify your intention.

Apply Report Settings check-box

In Library Details you can run a report by double-clicking on the report ID. In Report Folders, you can run a
report by highlighting the report and clicking the Run button. 

In either case, if the Apply Report Setting box is checked, the report will be loaded but the report will not be
run. This sets the selections of dimensions and other report choices, but does not load new data from the
OLAP workspace.

Advanced tab



myObjectiveOLAP Version 2.9.8

186 / 205

This work area provides OLAP DML command lists, mainly of interest to developers.

Export Excel

Export to Excel

Use this button to copy your report to an instance of Excel. You will be presented with a choice:

Yes 
The report will be exported to a workbook in a new instance of Excel which is independent of the
instance running myObjectiveOLAP.

No 
The report will be exported to a workbook which is in the same instance of Excel which running my
ObjectiveOLAP. 
The workbook cannot be closed until after the Data Explorer is closed.

Export QDR

When this option is ticked (in the header area of the Report tab), the Export to Excel option writes formulas
in the worksheet cells instead of the data. These formulas use myObjectiveOLAP functions to refer directly
to the data in the OLAP analytic workspace, for example:

     =mooCellQDR("ABCOH","ABCACC","E870TO895","ABCCC","CCA000000","GL_TIME1","
YR2012")

If the instance of Excel is correctly logged in to OLAP, the formula provides the required data. If the instance
is not logged in, the formula returns an error message:

     You are not connected to an Oracle OLAP database

You can now run the Excel linked report directly to the database without using Data Explorer.

Save as Excel button

Saves the current data as an Excel worksheet file. A normal file selector window is opened so that you can
create a new file or choose to over-write an existing one. The file type is .xls (excel spreadsheet), and can
be opened with Excel.



myObjectiveOLAP Version 2.9.8

187 / 205

Close button

Exit from the Data Explorer and return to the myObjectiveOLAP main menu.

New Report button

Discard the current report and start a new one.

Refresh Data button

Refresh the connection with the OLAP database in order to see any recent changes to the data.

Background information: When you log in to myOracleOLAP, you connect to the OLAP workspace, and the
data that you see during your session reflects the saved state of the data at that time. If the OLAP
workspace data changes during your session, you do not normally see those changes, and this ensures
that you see a consistent view of the data during your session. If you want to see an updated view of the
OLAP workspace data, you can use the Refresh Data button; this has a similar effect to logging in again.

Your report settings will be lost when you do this. To avoid this, save your report first, then re-open it after
refreshing.

API

mooServer API

The following API calls are supported.  They reside in MOOSERVER.MOOCODE.  You are free to make
use of these API calls in your own application. We at myObjectiveOLAP will ensure that we provided
backwards compatibility for these APIs.

Important Note. 

We have made the decision not to HIDE the source code for these supported APIs to help you understand
their execution and use, and should you have issues using them enable PRGTRACE.  

However:

· The source code remains subject to SDMC Consulting Limited copyright.   

· You may not publish on the Internet any part of the source code.  Only exception is to the
support.myobjectiveolap.com support portal.

· You may not take any part or all of the source code and use it in any other application. 

· You may not copy, distribute any part or all of the source code by any medium.

Failure to understand and comply could result in any or all of the following actions.



myObjectiveOLAP Version 2.9.8

188 / 205

· Removal of your license to use myObjectiveOLAP no license fee will be returned.

· Disposal of your support agreement no outstanding support fees will be returned.

We do not limit our remedies to the above and reserve the right to seek damages for any
breech. 

At the very least we will start hiding the API source code.

That said, if you notice any bugs we'd be happy to hear from you.

Warning and Information.

Other API's exist in MOOSERVER.MOOCODE use of APIs specifically not listed in this API Help Chapter
is not supported or recommended as they are liable to change.   

We are constantly working to ensure are APIs are stable and the Input / Output can be guaranteed.

APIs will be moved regularly into this stable and supported list.

If you believe we should prioritise an API to stable/supported to resolve an application development issue
please log a support request and we will do our best to fast-track the specific API.

MOO.ATTACH.AW

MOO.ATTACH.AW

.Attach a named aw in a given state and position in the database order 

Syntax

moo.attach.aw('[aw name]','[RW|RO]','[pos]')

Return Value

none

Example

call moo.attach('my_aw','ro','last')

MOO.CHANGE.DIM

MOO.CHANGE.DIM

Changes the meta-data objects for a given dimension and re-registers. 

Syntax

            call moo.change.dim([DimensioNameToChange],
[RowDescriptionVarianle]
                               ,[ColDescriptionVariable],
[GeneralDescriptionVariable]
                               ,[NameOfVariableStoringParentChileRelationship]



myObjectiveOLAP Version 2.9.8

189 / 205

                               ,[DescriptionOfDimension],  Bool:CreateObjects
True/False )

Return Value

SUCCESS or error values

Example

            call moo.change.dim('EXISTING_DIM',
                                'NEW_DIM_ROW','NEW_DIM_COL',
                                'NEW_DIM_DESC',
                                'NEW_DIM_HIER',
                                'New Dimension Description',
                                'FALSE')

MOO.CHANGE.PASSWORD

MOO.CHANGE.PASSWORD

Changes the password for the current user

Syntax

moo.change.aw('[old password hash]','[new password hash]')

Return Value

"OK" or {ERROR Code}

Example

call
MOO.CHANGE.PASSWORD('KYLsbLM1INV17zrItythxnB34yU=','bF5VLKIeX8m4sgzmCe3p3seTlr
U=')

MOO.CREATE.CUBE

MOO.CREATE.CUBE

Create a new cube and its associated metadata and re-register it. 

Syntax

call moo.create.cube([CubeObjectNameToCreate],[Dimensions],
[CompositeDimensions],
                                 [CompositeObjectName],[DescriptionOfCube],
                                 [DataTypeOfCube],
                                 [PostUpdateProcess],[PreUpdateProcess],  
                                 [IsInternalObject])

Definitions

Argument Description

CubeObjectNameToCreat
e

Object name of new cube



myObjectiveOLAP Version 2.9.8

190 / 205

Dimensions List of dimension names separated by a space

CompositeDimensions List of dimensions of the composite separated by a space

CompositeObjectName Object name of the composite

DescriptionOfCube Description of the cube

DataTypeoOfCube Data type of the cube

PostUpdateProcess Name of the process to run after the cube has been updated

PreUpdateProcess Name of the process to run prior to the cube being updated

IsInternalObject Is this an internal object?

Return Value

SUCCESS or error values

Example

            call moo.create.dim('NEW_CUBE','DIM_1 DIM_2 DIM_3 DIM_T',
                                'DIM_1 DIM_2 DIM_3',
                                'CMP_NEW_CUBE',

  'New Decimal Data Cube',
                                'DECIMAL',
                                'N',
                                'N',
                                'FALSE')

MOO.CREATE.DIM

MOO.CREATE.DIM

Create and new dimension and its associated metadata. 

Syntax

            call moo.create.dim([DimensioNameToCreate],[DimensionType],
[RowDescriptionVariable]
                               ,[ColDescriptionVariable],
[GeneralDescriptionVariable]
                               ,[ParentChileRelationshipVariable]
                               ,[DescriptionOfDimension],  Bool:CreateObjects
True/False )

Definitions

Argument Description

DimesniontNameToCreat
e

Name of dimension to create

DataTypeoOfCube Data type of new dimension

RowDesriptionVariable Object holding the row descriptions of the dimension values

ColDesriptionVariable Object holding the column descriptions of the dimension values

GeneralDesriptionVariable Object holding the general descriptions of the dimension values

ParentChileRelationshipV
ariable

Object holding the parent/child relations for the dimension values



myObjectiveOLAP Version 2.9.8

191 / 205

DescriptionOfDmension Description of the dimension

IsInternalObject Is this an internal dimension?

Return Value

SUCCESS or error values

Example

            call moo.create.dim('NEW_DIM','TEXT',
                                'NEW_DIM_ROW','NEW_DIM_COL',
                                'NEW_DIM_DESC',
                                'NEW_DIM_HIER',
                                'New Dimension in AW',
                                'FALSE')

MOO.DATA.ENTRY

MOO.DATA.ENTRY

Processes changed data in a valid MOODATA registered cube or variable.

Syntax

            call moo.data.entry([CUBE.ROW Value])

Return Value

SUCCESS or error values

Example

You have changed data in a variable called OPEX_ACT read-only in MOODATA.  You have limited the
dimensions of OPEX_ACT to just the values that have changed. To ask the Process Manager to Save this
data you should execute:

shw MOO.DATA.ENTRY('OPEX_ACT')

The Process Manager will execute a SUBMITDATA process, it will log the data to the SUBDATA audit
analytic workspace, check the data is valid and the user has the correct rights to update the OPEX_ACT
variable.  Finally it will write the data to MOODATA and commit the change.

MOO.DELETE.CUBE

MOO.DELETE.CUBE

Delete a cube in the MOODATA AW and associated metadata and de-register it. 

Syntax

call moo.delete.cube([CubeObjectName])

Definitions

CubeObjectName Object name of cube to be deleted



myObjectiveOLAP Version 2.9.8

192 / 205

Return Value

SUCCESS or error values

Example

            call moo.create.dim('NEW_CUBE')

MOO.DETACH.AW

MOO.DETACH.AW

Detach a named AW.  

Update if requested.

Syntax

moo.detach.aw('[aw name]',{yes|no})

Definitions

Argument Description

AW Name Name of the Analytic Workspace to detach

Update First Boolean YES / NO {Default NO}  Update the AW and commit any changes before
detaching

Return Value

none

Examples

call moo.detach('my_aw')

call moo.detach('my_aw',y)

MOO.DELETE.DIM

MOO.DELETE.DIM

Deletes a dimension in the MOODATA Analytic Workspace and associated metadata and de-registers it
from DIM.CFG. 

Syntax

call moo.delete.cube('[DimObjectName]',[Cascade{TRUE}])

Definitions

Argument Description



myObjectiveOLAP Version 2.9.8

193 / 205

DimObjectName Object name of dimension to be deleted

Cascade Boolean YES / NO {Default NO}  If YES all objects dimensioned by the
DimObjectName will be deleted

Return Value

SUCCESS or error values

Examples

            call moo.delete.dim('DIM_1')

call moo.delete.dim('DIM_1',TRUE)

MOO.EXTERNAL.CALL

MOO.EXTERNAL.CALL

Process to run an external task to the Oracle DBMS_Scheduler.  This may be one of a number of
predefined tasks or a shell script held on the server.  

Syntax

            call moo.external.call([Job{LSDIR|CHMOD|MAIL|MAIL_ATTACH}],
          [Argument1],[Argument2],[Argument3],[Argument4],

   [Enable],[AddBit],
                                   [Execute])

where LSDIR  Lists the files in a provided directory
CHMOD Changes the permissions on a given file
MAIL Send an email from OLAP provided that mailx has been installed
MAIL_ATTACH Send an email from OLAP provided that mails has been installed

Definitions

Job Name of the predefined job
Argument[1-4] Individual arguments to be passed to the job
Enable Object holding the row descriptions of the dimension values
AddBit Object holding the column descriptions of the dimension values
Execute Name of a shell script to be run

Return Value

none

Examples

List all files in database directory alias MOOCDA  and send to a file [MOOCDA]/tmp.txt

call moo.external.call('LSDIR', 'MOOCDA' ,  '  ' ,
'listfile.txt',  NA, TRUE, FALSE, NA)
                  

Changes the file permissions of a given file.  Example, Change /tmp/tmp.sh to 777



myObjectiveOLAP Version 2.9.8

194 / 205

call moo.external.call('CHMOD', '777', '/tmp/tmp.sh', NA,NA, TRUE,
FALSE, NA)

To send an email directly from Oracle OLAP. Example, Send an email to me@myobjectiveolap.com

call moo.external.call('MAIL', 'This is the content', 'Subject:
Message from OLAP', 'me@myobjectiveolap.com', NA, TRUE, FALSE, NA)

To send an email with attachment directly from Oracle OLAP,  Example, Send an email to
me@myobjectiveolap.com and attach a copy of the script which sends it

call moo.external.call('MAIL_ATTACH', '/home/oracle/moochmod.sh',
'moochmod.sh',  

                      'Subject Sending a file from olap',
'me@myobjectiveolap.com', TRUE, FALSE, NA)

Running Your own Jobs

You can pass the name of your own shell script to moo.external.call
Essentially you could build a script dynamically through an OLAP DML OTF statement and then

call this program to run it.
Often you should change the permissions first. This is done by setting the REQUIRE_ADDBIT

argument to TRUE as below.
Permissions are set to 775.  This is only supported on Unix-like and otherwise POSIX-compliant

systems.
Do not try and set the REQUIRE_ADDBIT on Windows

call moo.external.call('MyJob', 'myArg1stToMyJob',
'myArg2ndToMyJob', 'myArg3rdToMyJob', TRUE, TRUE, '/tmp/myShellScript.sh')

Example

call moo.external.call('myJob', '/u01', '/tmp/myjob.out', NA, NA,
TRUE, FALSE, '/home/oracle/moolistfiles.sh' )

MOO.FIND.CMP

MOO.FIND.CMP

Returns the composite of a given variable 

Syntax

            call moo.find.cmp('[object name]')

Return Value

Composite value

Example

shw moo.find.cmp('CUBE_1')

CMP_CUBE_1 

mailto:me@myobjectiveolap.com
mailto:me@myobjectiveolap.com
mailto:me@myobjectiveolap.com
mailto:me@myobjectiveolap.com


myObjectiveOLAP Version 2.9.8

195 / 205

MOO.SUBMIT.DATA

MOO.SUBMIT.DATA

Run a data submission.   If a data submission has been placed in PRCONTROL by calling
MOO.DATA.ENTRY, the Submit Data Process can be run through the Process Manager, or manually by
calling MOO.SUBMIT.DATA passing the PROCESS id assigned to the SUBMITDATA Process.

Syntax

            call moo.submit.data([process number])

Return Value

SUCCESS or error value

MOOMAN

mooMan

Provides online syntax information of moo API components.  The syntax information is held within the
program code'

Syntax

mooman [program name]

Return Value

    Appropriate syntax or an error message

Example

mooman 'moo.create.dim'

API:        MOO.CREATE.DIM
Purpose:    Create Dimensions and associated meta data for storing

description and hierarchical data.
            Register the created objects in the the metaData

magazine DIM.CFG

            Arguments:

            call moo.create.dim([DimensioNameToCreate],
[DimensionType], [RowDescriptionVariable]
                                 ,[ColDescriptionVariable],
[GeneralDescriptionVariable]
                                   ,
[NameOfVariableStoringParentChildRelationship]
                                           , [DescriptionOfDimension], 
Bool:CreateObjects True/False )



myObjectiveOLAP Version 2.9.8

196 / 205

MOO.LIST.DIMS

MOO.LIST.DIMS

Lists the dimensions of a given variable or composite

Syntax

            call moo.dist.dims('[object name]')

Return Value

A list of dimensions or na

Example

shw moo.list.dims('cube_1')

DIM_1
DIM_2
DIM_3
DIM_T 

MOO.NEW.PROCESS

MOO.NEW.PROCESS

Submit a new process to Process Control

Syntax

            
call moo.new.process([ProcesstType],[Limit],[ArgumentString])

Return Value

Process Id created

MOO.USER.CLOSE

MOO.CLOSE.USER

Called by user GUI at disconnect to close AWs down

Syntax

            
call moo.close.user

Return Value

OK or error message



myObjectiveOLAP Version 2.9.8

197 / 205

MOO.USER.INIT

MOO.USER.INIT

Start-up a mooServer Session

You can manually start a mooServer session by calling the following Express program:

 MOOSERVER.MOOCODE!MOOUSER.INIT.

By calling this program, mooServer will validate the user details, and attach all necessary Oracle OLAP
Analytic Workspaces.

Before calling this program you must have pre-populated the following variables:

EXPRESS!ME_USER
EXPRESS!HASH_STR

If this is a brand new session it may be necessary for your client to create these objects, below is the
definition:

DEFINE ME_USER  EXPRESS VARIABLE TEXT TEMPORARY
DEFINE HASH_STR EXPRESS VARIABLE TEXT TEMPORARY

ME_USER

You should populate the ME_USER variable with a valid MOOSERVER.MOOUSERS!USER 

HASH_STR

HASH_STR must be populated with a valid password hash.

MOO.CHANGE.CUBE

MOO.CHANGE.CUBE

Changes the metadata of an exiting cube and its associated metadata and re-register it in CUBE.CFG. 

Syntax

call moo.change.cube([CubeObjectName],
                               [DescriptionOfCube],
                               [PostUpdateProcess],

 [PreUpdateProcess],  
                               [IsInternalObject])

Definitions

Argument Definition

CubeObjectName Object name of an existing cube

DescriptionOfCube New description of the cube

PostUpdateProcess New name of the process to run after the cube has been updated

PreUpdateProcess New name of the process to run prior to the cube being updated



myObjectiveOLAP Version 2.9.8

198 / 205

IsInternalObject New status of this being an internal object

Return Value

SUCCESS or error values

Example

            call moo.create.dim('CUBE_1',
  'New Description for Decimal Data Cube',

                                'N',
                                'N',
                                'FALSE')

MOO.COMP.SANE

MOO.COMP.SANE

Checks the dimensionality of an existing composite against a given set of dimensions.

Syntax

            call moo.comp.sane('[list of dimesnions]','[object name]')

Return Value

Yes or no

Example

where, 

dsc cube_1

DEFINE CUBE_1 VARIABLE DECIMAL <CMP_CUBE_1 <DIM_1 DIM_2 DIM_3>
DIM_T>

shw moo.comp.sane('DIM_1 DIM_2 DIM_3' 'CMP_CUBE_1')

yes

shw moo.comp.sane('DIM_1 DIM_2 DIM_X' 'CMP_CUBE_1')

no

MOO.LIST.DIM.DESC

MOO.LIST.DIM.DESC

Lists the dimension descriptions of a given variable or composite

Syntax

            call moo.dist.dim.desc('[object name]')

Return Value



myObjectiveOLAP Version 2.9.8

199 / 205

A list of dimension descriptions or NA

Example

shw moo.list.dim.desc('cube_1')

Sample Dimension 1
Sample Dimension 2
Sample Dimension 3
Sample Dimension Time 

MOO.CREATE.USER

MOO.CREATE.USER

Create a user in MOOUSERS

Syntax

shw moo.create.user([USERNAME],[FIRSTNAME],[SURNAME],[DEPARTMENT],
_

  [EMAIL],[NOTES {multiline \n}],[PASSWORD],
[DISABLED{YES|NO},[IS_ADMIN{YES|NO})

Definitions

Username New user ID
FirstName New user's first name
Surname New user's surname
Department New user's department
EMail New user's email address
Notes Notes on specific user (use \n for multiline)
Password New user's password 
Disabled Whether the user is disabled {YES|NO}
Is_Admin Whether the users is a systems admin user {YES|NO}

Return Value

SUCCESS of error message

MOO.DELETE.USER

MOO.DELETE.USER

Deletes a user from MOOUSERS

Syntax

shw moo.create.user([USERNAME])

Definitions



myObjectiveOLAP Version 2.9.8

200 / 205

Argument Definition

Username MOOSERVER.MOOUSERS$USER Dimension Value

Return Value

SUCCESS of error message

Examples

shw moo.delete.user('JAKE')

MOO.MNT.HI

MOO.MNT.HI

Populates the appropriate parent, sequence and depth objects for a given hierarchy based on the current
parent/child relationships.  
The objects populated will be those held in the MOOSERVER.MOODATA$HI.CFG magazine for the given
hierarchy.

MOOSERVER.MOODATA$HI.CFG(MOOSERVER.MOODATA$HI.CFG$HI.COL 'PARENT     ')
MOOSERVER.MOODATA$HI.CFG(MOOSERVER.MOODATA$HI.CFG$HI.COL 'SEQUENCE')
MOOSERVER.MOODATA$HI.CFG(MOOSERVER.MOODATA$HI.CFG$HI.COL 'DEPTH        ')

Syntax

            call moo.mnt.hi('[object name]')

Where object name is a value from the .HIER.LIST of the base dimension.

dsc dim_1_hier

DEFINE DIM_1_HIER RELATION DIM_1 <DIM_1 DIM_1.HIER.LIST>

Return Value

none

Example

call moo.mnt.hi('DIM_1_MAIN')

MOO.PR.ACTIVATE

MOO.PR.ACTIVATE

Activates a process that has been placed in the Process Manager queue.

Syntax

            call moo.pr.activate([Process])

Definitions



myObjectiveOLAP Version 2.9.8

201 / 205

Argument Description

Process An existing Process ID

Return Value

call moo.pr.activate('1357056773')

MOO.PR.DURATION

MOO.PR.DURATION

Calculates the duration of a process given the start and finish times.

Syntax

            call moo.pr.duration([Start],[Finish])

Definitions

Start Seconds value of the process start time
Finish Seconds value of the process finish time

Return Value

A time represented in HH:MM:SS

Examples

shw moo.pr.duration('1352026146','1352026152')

00:00:06

MOO.PR.MGR

MOO.PR.MGR

Manages process execution in the Process Manager.   Normally called by the Process Daemon (PRD). 
Can be called manually to process one Process execution.

Syntax

            call moo.pr.mgr

Return Value

None or error message

MOO.PR.SEQUENCE

MOO.PR.SEQUENCE



myObjectiveOLAP Version 2.9.8

202 / 205

Populate the sequence property in PR.CTL

Syntax

            call moo.pr.sequence

Return Value

None or error message

MOO.PROCESS.LOG

MOO.PROCESS.LOG

Update the process log of a given process with a message.   Typically used in OLAP DML Programs
designed to execute in the Process Manager.

Syntax

            call moo.process.log([Process],[Message])

Definitions

Process An existing Process ID
Message Text message to go in process log

Return Value

None or error message

Examples

_msg = 'Duplicate values in dimension list. Job Canceled'
  call moo.process.log(current.process, _msg)

MOO.REMOVE.WFPROCESS

MOO.REMOVE.WFPROCESS

Remove a process from all workflows

Syntax

            call moo.remove.wfprocess([Process])

Definitions



myObjectiveOLAP Version 2.9.8

203 / 205

Argument Description

Process The PR.ROW value of a valid Process

Return Value

SUCCESS or error message

Examples

call moo.remove.wfprocess('AGGREGATE_MYCUBE')

MOO.SPLIT

MOO.SPLIT

Convert a chr30 delimited input into a multi-line output. 

Syntax

            call moo.split('[Space delimited input]')

Return Value

Multi-line output

Example

shw moo.split('Text1 Text2 Text3 Text4')

Text1
Text2
Text3
Text4

MOO.UNTAR.FILE

MOO.UNTAR.FILE

Wrapper to MOO.EXTERNAL.CALL and userland TAR utility to un-TAR a file into a specific directory

UNTAR a file on the host file system.  This is a wrapper to MOO.EXTERNAL.CALL API.
Location of the un-tar shell script used by this API is stored in the SYS.CFG Magazine.
Execution of the un-tar is managed by the Oracle DBMS Scheduler and requires the correct DBMS
Scheduler Credentials to have been created

Syntax

shw MOO.UNTAR.FILE( {FQ Directory to change to before Un-tar} , {Full Path and
Name of tar file}  )

Return Value

SUCCESS, ERROR, MOOMAN Entry

Example

shw moo.untar.file('/u01/inbound_files' , '/u01/inbound_files/
ebiz_feed.tar') 



myObjectiveOLAP Version 2.9.8

204 / 205

MOO.AGGREGATE.CUBE

MOO.AGGREGATE.CUBE

Process control program used to run moo.aggregate.  moo.aggregate.cube assumes that cube.row and
dim.row have been limited to a cube and the appropriate dimensions respectively.  

Syntax

            call moo.aggregate.cube

Return Value

SUCCESS or error message

Examples

call moo.aggregate.cube

MOO.AGGREGATE

MOO.AGGREGATE

Runs an aggregation on the cube passed to the program over the dimensions passed.  

The aggregation uses default aggmap created based on the cube dimensions.

Syntax

            call moo.aggregate([Cube],[AggDims],[Status]{yes|no})

Definitions

Argument Description

Cube Object name of the cube to be aggregated

AggDims A multi-line list of dimensions over which the cube will be aggregated

Status Retain status of dimension set during the aggregation on exit.

Return Value

None or error message

Examples

call moo.aggregate('OPEX_CUBE' , 'ACCOUNT/nCOST_CENTRE/TIME' ,
YES)

MOO.AWM.COMPAT

MOO.AWM.COMPAT

Creates the AWM compatibility layer.



myObjectiveOLAP Version 2.9.8

205 / 205

Syntax

            call moo.awm.compat('[Verbose]{true|false}',
   [ShwSQL]{true|false}',
   [JustSQL]{true|false}',
   [DropTable]{true|false}',)

Definitions

Argument Description

Verbose Show Output

ShwSql Send the definition of the SQL to be executed to the current outfile

JustSQL Just generate TEMP.COMPAT.SQL but do not actually execute it

dropTable Drop and re-create Tables instead of just truncating and re-snapping them from the
Relational Views

Return Value

Various {STRING}

MOO.AWM.COMPAT.WRAP

MOO.AWM.COMPAT.WRAP

Runs the moo.awm.compat process with all arguments set to false.

Syntax

            call moo.awm.compat.wrap

Return Value

SUCCESS or error message


	Introduction
	Introducing myObjectiveOLAP
	Conventions
	myObjectiveOLAPXL.dll Exposed functions
	Accessing Exposed Functions
	Legal
	What's new in V 2.9.8

	Getting Started
	System requirements
	Files
	System Dependecies
	Installing the Oracle Data Access Provider


	Getting help
	Installing
	Installing myObjectiveOLAP
	Uninstalling myObjectiveOLAP
	Upgrading from a previous version


	Application Configuration Files
	mooApplicationSettings.xml
	Full ApplicationSettings File
	OLAP Only
	mooServer - User Profile
	mooServer - DBA  Profile
	Escendo enabled profile
	Restricting access to users

	Connection Files

	Connecting
	Standard OLAP Connection
	Escendo Connection
	mooServer Connection

	Graphical Tools
	Analytic Workspace Selector
	Session Manager
	Application Settings Editor
	OLAP Console
	Oracle OLAP DML Editor
	Read OLAP Script File
	Relational Explorer
	Using Relational Explorer
	Builder
	Viewing your report
	Freehand SQL
	Saving Data to a file
	Saving your report definition


	Microsoft Excel Functions
	mooDesc
	mooCellQDR
	mooCellQDRT
	mooQT
	mooQN
	mooQ
	mooW

	Manipulating Oracle OLAP from Microsoft Excel VBA
	Common Functions
	Handling Connections
	connect
	connected
	connectSpec
	disconnect

	AW Operations
	mooAWAttach
	mooAWAttached
	mooAWDetach

	Oracle OLAP Executing Commands
	mooexecute
	wrap_runNonQ
	wrap_GetDML

	Functions
	mooAllStat
	mooAnalyzeCube
	mooClearAnalyzeCube
	mooFreePages
	mooHost
	mooInstance
	mooSeconds
	mooSysTimeStamp
	mooUser
	olapQDR
	mooSysDate
	mooGetDimList

	Error Handling
	getLastMooErr
	mooClearErr
	mooServErr

	Working with objects
	mooDimLen
	mooExists
	mooObjType
	mooOpenDim
	mooPushDims
	mooPopDims
	mooStatlen

	Local library functions
	mooEncrypt
	mooSetLang
	loadSavedScript
	loadSavedScriptFile

	moo Fast Reporting
	mooFR
	mooFRDescDown
	mooFRDescAcross
	Example Application


	Setting OLAP Options
	mooSetAwWaitTime
	mooSetBadLine
	mooSetCommas
	mooSetDateFormat
	mooSetDecimals
	mooSetLikeCase
	mooSetNASpell
	mooSetNASkip
	mooSetNASkip2
	mooSetParens

	Standard OLAP Graphical API
	CommandBar
	mooCmd_line
	mooShowConnFrm
	ShowAvailAW


	myObjectiveOLAP Server
	Architecture
	Installing
	Connecting
	Administration
	Process Management
	Process Builder
	Defining a New Process
	Copy Process

	Process Manager
	Technical Process Manager Flow Diagram
	Technical Implementation

	Workflow Builder

	User Management
	Oracle OLAP Standard Compatability
	Structures
	Creating or modifying a dimension
	Creating or modifying a cube
	Values, hierarchies, attributes.

	System Configuration
	Health Check
	mooServer Backup
	Multi AW Mode
	Managing Multi AW


	Submitting Data
	Excel Reporting Functions
	mooDimDesc
	mooCellQDR

	Data Explorer
	Using Data Explorer
	Layout Designer
	Selector
	Report
	Management
	Export Excel

	API
	MOO.ATTACH.AW
	MOO.CHANGE.DIM
	MOO.CHANGE.PASSWORD
	MOO.CREATE.CUBE
	MOO.CREATE.DIM
	MOO.DATA.ENTRY
	MOO.DELETE.CUBE
	MOO.DETACH.AW
	MOO.DELETE.DIM
	MOO.EXTERNAL.CALL
	MOO.FIND.CMP
	MOO.SUBMIT.DATA
	MOOMAN
	MOO.LIST.DIMS
	MOO.NEW.PROCESS
	MOO.USER.CLOSE
	MOO.USER.INIT
	MOO.CHANGE.CUBE
	MOO.COMP.SANE
	MOO.LIST.DIM.DESC
	MOO.CREATE.USER
	MOO.DELETE.USER
	MOO.MNT.HI
	MOO.PR.ACTIVATE
	MOO.PR.DURATION
	MOO.PR.MGR
	MOO.PR.SEQUENCE
	MOO.PROCESS.LOG
	MOO.REMOVE.WFPROCESS
	MOO.SPLIT
	MOO.UNTAR.FILE
	MOO.AGGREGATE.CUBE
	MOO.AGGREGATE
	MOO.AWM.COMPAT
	MOO.AWM.COMPAT.WRAP



